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Risk Analyses for Disposing Nonhazardous 
Oil Field Wastes in Salt Caverns 

D. Tomasko, D. Elcock, J. Veil, and D. Caudle 

Executive Summary 

Salt caverns have been used for several decades to store various hydrocarbon products. In 
the past few years, four facilities in the United States have been permitted to dispose 
nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted 
in Canada and in Europe. This report evaluates the possibility that adverse human health effects 
(carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the 
caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation 
assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls 
during the post-closure phase of operation.   In this assessment, several steps were followed to 
identify possible human health risks. At the broadest level, these steps include identifying a 
reasonable set of contaminants of possible concern, identifying how humans could be exposed to 
these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and 
characterizing their associated human health risks. 

The contaminants of concern for the assessment are benzene, cadmium, arsenic, and 
chromium. These were selected as being components of oil field waste and having a likelihood to 
remain in solution for a long enough time to reach a human receptor. 

Post-closure releases of fluids from the caverns can be classified under the following 
scenarios for the present study: inadvertent intrusion by unintentionally drilling a new well into a 
closed cavern; failure of the cavern seal due to increased pressure from salt creep and geothermal 
heating; release of contaminated fluid through cracks, leaky interbeds, or nonhomogeneous zones 
composed of higher permeability material; and partial cavern roof fall. Most releases would be to 
deep aquifers at or near the top of the cavern, although under several scenarios, released 
contaminants can move upward through the well casing and leak out into shallow aquifers. 

For the inadvertent intrusion scenario, up to 2,000 gallons (gal) of contaminated fluids 
would move quickly to the surface where, if not contained by the drilling blowout-prevention 
system, would most likely form a pool on the ground surface. These materials would not 
penetrate very far into the ground and could be readily cleaned up. Because the volume of 
released fluid for this scenario would be small, the effects would be of very short duration, the 
liquid would not be potable, and such a spill would be quickly remediated, the scenario was 
eliminated from further analyses. 



In most of the other scenarios, the release pattern would be to have the pressure build up 
in the cavern to a level that causes seal failure or cracks. A small amount of contaminated fluids 
(assumed to be 2,000 gal) would be released and the internal cavern pressure would decrease. The 
cracks or leaks could self-heal after the release because of additional salt creep. With 
repressurization of the cavern, the cracks or leaks could once again open, producing a series of 
short contaminant pulses (probably on the order of hours to days in duration). Under the 
remaining scenarios, releases would be gradual and long-term seeps through cracks, leaky 
interbeds, or other nonhomogeneous zones composed of higher permeability material. 

Not every closed cavern is expected to undergo releases, so some measure of the 
probability of failure must be incorporated into the analyses. Because experience with disposal 
caverns is limited and they have not been in operation for very many years, virtually no 
information exists about the accident or release rates from disposal caverns. In order to estimate 
the range of the probabilities of occurrence, a questionnaire was distributed to experts in the field 
of salt caverns. The panel of experts was asked to provide both a "best-estimate" and a "worst- 
case" estimate of the probability of occurrence for each of the release scenarios. The estimates 
from each expert were averaged. Averaged best-estimates for the different scenarios ranged from 
0.006 for partial roof fall plus cavern seal failure and fluid release at shallow depth to 0.1 for 
partial roof fall plus fluid release at depth. Averaged worst-case estimates ranged from 0.04 for 
seal failure with fluid release at shallow depth to 0.29 for partial roof fall plus fluid release at 
depth. 

Once contaminated fluids leave the cavern, they are expected to migrate laterally and 
vertically through different formations and aquifers. During the time the fluids travel from the 
point of release to the receptor site (assumed to be 1,000 ft laterally from the cavern) various 
physical, chemical, and biological processes occur that reduce the concentration of the 
contaminants. Fate and transport modeling was used estimate the contaminant concentrations at 
the receptor point (exposure point concentrations). 

Risk calculations were conducted using the exposure point concentrations, assumed 
drinking water intake rates, and standard assumptions regarding exposure time, duration, and 
frequency. Based on assumptions that were developed for a generic cavern and generic oil field 
wastes, the estimated human health risks for worst-case conditions are very low (excess cancer 
risks of between 1.1 x 10~8 and 2.0 x 10"17) and hazard indices (referring to noncancer health 
effects) of between 6 x 10"5 and 1.0 x 10"7. Normally, risk managers consider risks of 1 x 10"6 and 
less and hazard indices of less than 1 to be acceptable. For best-estimate conditions, the excess 
cancer risks were calculated to be between 1.3 x 10"9 and 3.8 x 10"18 and the hazard indices were 
between 1.4 x 10"5 and 1.9 x 10"8. 

Caveats regarding the use of the results of this report include the following. First, the 
assessment does not address risks to workers at the cavern disposal site. Such risks would be 
comparable to or less than worker risks associated with hydrocarbon cavern storage operations. 
Second, the assessment does not determine whether any health effects will occur in the future; it 
only estimates cancer risk and potential for noncarcinogenic effects. Third, risks have only been 



estimated for contaminants for which toxicity values were available; just because there is no 
toxicity value does not mean there is no risk. Finally, the assessment is limited to human health 
effects produced by nonradioactive contamination; it does not address the possible ecological 
risks associated with salt cavern disposal, nor does it estimate risks associated with NORM that 
may be included in oil field wastes. 



1. Introduction 

In 1996, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne 
National Laboratory (ANL) to conduct a preliminary technical and legal evaluation of disposing 
of nonhazardous oil field wastes (NOW) into salt caverns. The conclusions of that study, based 
on preliminary research, were that disposal of oil field wastes into salt caverns is feasible and 
legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored 
routinely, they can be a suitable means for disposing of oil field waste (Veil et al. 1996). 
Considering these findings and the increased U.S. interest in using salt caverns for nonhazardous 
oil field waste disposal, the Office of Fossil Energy asked ANL to conduct a preliminary 
identification and investigation of the risks associated with such disposal. 

The purpose of this report is to evaluate the possibility that adverse human health effects 
(carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the 
caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation 
assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls 
during the post-closure phase of operation. It does not consider the risks associated with 
emissions from surface equipment operating at the site, nor does it consider the risks associated 
with surface oil leaks or other equipment-related spills or accidents. 

The study focuses on possible long-term risks to human health. It does not address 
potential ecological effects, although such effects could result. Also, risks associated with 
naturally occurring radioactive materials (NORM) are not addressed. This preliminary assessment 
estimates risks associated with disposal in a single generic cavern only. No attempt has been 
made to address the possibly or likelihood that several caverns may be located in relatively close 
proximity and that more than one cavern could be a source of contamination to a given receptor. 
Also, no attempt has been made to evaluate the possible impacts of synergistic effects of multiple 
contaminants on a single receptor. 

Because the history of salt cavern use for solid waste disposal is very limited, no readily 
available data could be accessed for this study. As a result, data from similar operations and 
professional judgment were used to develop the possible release mechanisms assumed in this 
hypothetical, generic analysis. The validity of the results would be enhanced if real data could be 
used. As data are generated on the use and post-closure operations of salt caverns used for solid 
waste disposal, they should be incorporated to update this study. 

In this assessment, several steps were followed to identify possible human health risks. At 
the broadest level, these steps include identifying a reasonable set of contaminants of possible 
concern, identifying how humans could be exposed to these contaminants, assessing the toxicities 
of these contaminants, estimating their intakes, and characterizing their associated human health 
risks. The risk assessment methodology and techniques used in this report are based in large part 
on two documents. The first document is a training manual that was developed for a risk 
assessment workshop sponsored by DOE (DOE 1996). The second is the Risk Assessment 
Guidance for Superfund (U.S. Environmental Protection Agency [EPA] 1989). 



The remainder of this report consists of nine sections. Section 2 provides background on 
the development, use, and closure of salt caverns that may be used for disposal of nonhazardous 
oil field wastes and possible cavern release scenarios. Section 3 identifies contaminants of 
potential concern that could cause harm to human health. Sections 4, 5, and 6 provide 
information for assessing potential exposure pathways that the contaminants of concern could 
take to reach human populations. Specifically, Section 4 describes fate and transport mechanisms 
of the contaminants of concern; Section 5 describes specific hydrogeologic conditions of locations 
where salt caverns are most likely to be used for oil field disposal (Gulf Coast, Texas, and New 
Mexico); and Section 6 describes potential release modes that could cause contaminants to leak 
from the cavern and be transported to areas where human populations may be exposed. Section 6 
also estimates possible concentrations of the contaminants to which humans could be exposed 
under various release scenarios. Section 7 describes the toxicity of those contaminants that could 
come in contact with humans, given the fate and transport mechanisms identified in Section 5 
combined with the potential exposure pathways described in Section 6. Section 8 estimates the 
potential intakes of those contaminants by humans and characterizes the risks to which those 
humans may be subjected on the basis of the intake of the contaminants (the potential for harm), 
their toxicities, and the release assumptions. Section 9 addresses the sensitivity of the estimated 
risks to operating procedures and potential regulatory structures, and Section 10 summarizes the 
results of the analyses. 



2. Salt Cavern Background 

The following section discusses the origins and development of salt caverns in the United 
States, waste disposal in caverns, sealing and abandoning salt caverns, and scenarios under which 
cavern contents could leave the cavern. 

2.1 Origins and Development 

As discussed in Veil et al. (1996), subsurface salt deposits occur in two major forms in the 
United States: bedded salt and salt domes. Although salt deposits occur in many parts of the 
United States, the occurrence of salt in quantities and locations that would promote commercial 
development is limited. There are 16 states in which salt occurs in sufficient quantity to be mined 
by either excavation or solution mining or to be recovered through solar evaporation. States 
having major salt deposits are Alabama, Arizona, Colorado, Kansas, Louisiana, Michigan, 
Mississippi, Montana, New Mexico, New York, North Dakota, Ohio, Oklahoma, Pennsylvania, 
Texas, and Utah. Of these states, those with the most significant salt mining are Kansas, 
Louisiana, Michigan, New Mexico, New York, Ohio, and Texas (Veil et al. 1996). 

Bedded salt formations occur in layers interspersed with such sedimentary materials as 
anhydrite, shale, dolomite, and other more soluble salts (e.g., potassium chloride). These 
materials have varying degrees of permeability, but all are generally low (Freeze and Cherry 
1979). The bedded salt deposits are tabular and can contain significant quantities of impurities. 

Salt domes are large, nearly homogeneous formations of sodium chloride, although they 
may contain nonhomogeneous zones. Pfeifle et al. (1995) report that the typical anhydrite 
(CaS04) content of Gulf Coast salt domes averages less than 5%. These domes were created by 
geological processes that spanned millions of years (Chilingarian et al. 1989). About 30 million 
years ago, salt buried by more dense materials flowed to form pillows. Because of its lower 
density, salt flowed upward to form diapirs (domes or anticlinal folds whose overlying rocks have 
been ruptured by the squeezing-up of the more plastic salt core) and piercing overlying units. 

As the salt passed up through the overlying sediments, long, finger-like projections 
developed. The depth of the intruded salt (sedimentary piercements) can be greater than 10,000 ft 
(Whiting 1981a), and the top width of the salt domes ranges from about 0.5 to 2.5 miles 
(Chilingarian et al. 1989). If the intruded salt contacted undersaturated water, dissolution would 
occur. Through a complex interaction of dissolution, recrystallization, hydration of anhydrite to 
form gypsum, sulfate reduction, cementation, etc., a caprock was often formed. Although 
caprocks are common in the vicinity of salt domes, they do not always exist there (Linn 1997). 

At the top of the caprock, a region of limestone frequently developed. This limestone may 
have been formed by a number of processes, including reduction of the calcium-sulfate caprock, 
and precipitation from calcium-sulfate-rich water (Werner 1986). 



As the salt intruded the Cenozoic sediments along the Gulf Coast, various minerals were 
often precipitated in the vicinity of the caprock. Along with the minerals, oil was frequently 
trapped under the edge of the caprock. Because of the high probability of finding oil and other 
valuable minerals, salt domes have been extensively explored and mined for more than 100 years. 

Starting in the late 1800s, salt domes were commercially mined for salt by using various 
leaching techniques. The shapes of the resulting caverns were often irregular because of the 
techniques applied, but a number of caverns, such as West Hackberry Cavern 11, are nearly 
symmetrical (Tomasko 1985). 

Salt caverns are used for storing hydrocarbons. The earliest cavern storage in salt domes 
for liquified petroleum gas (LPG) started in 1951; LPG storage in bedded salt started somewhat 
sooner, in the early 1940s (Querio 1980). Some of the liquified products stored include propane, 
butane, ethane, fuel oil, gas, and crude oil. 

DOE acquired the rights to some existing caverns for the Early Storage Reserve (ESR) of 
the Strategic Petroleum Reserve (SPR). The ESR was designed to store 250 million barrels of oil 
of which about two thirds were to be placed in solution-mined caverns and one third in a 
conventional rock salt mine. Acquisitions for the ESR were made about 1977. SPR now has a 
capacity of 680 million barrels, and the rock salt mine has been removed from the program (SMRI 
1997). 

Private industry in the United States operates a large number of caverns for storing liquid 
petroleum products, petrochemicals, and natural gas. European countries have also used salt 
caverns as containment sites for the disposal of drilling muds and cuttings from deep oil and gas 
wells (Testa 1994). 

Nearly all salt caverns in the SPR are 2,000 ft tall and have a cavern roof that is at a depth 
of about 2,000 ft. The diameters of the caverns vary greatly, but a typical value is about 300 ft 
(Biringer 1984). The distance between caverns is variable, but a typical separation distance from 
center-to-center is more than 600 ft (Whiting 1981b). Volumetrically, SPR caverns are large, and 
each cavern contains about 10 million barrels (420 million gallons) of crude oil. Private sector 
caverns are generally smaller than the SPR caverns and have various sizes, shapes, and depths 
(Hickerson 1995). 

To create salt caverns, water that is not fully salt-saturated is injected into a salt stock and 
the resulting brine solution is withdrawn. This method is referred to as solution mining (Testa 
1994). The development and shape of the salt cavern can be controlled by the method used for 
construction. In the direct circulation method, fresh water is injected through a tubing string from 
the surface, and brine is withdrawn through an annular space between the tubing and final casing. 
In the reverse circulation method, fresh water enters through the annulus, and brine is removed 
through the tubing string. A combination of these two methods, or other more complicated 
methods, can be used to obtain the desired cavern shape. The American Petroleum Institute 
(API) provides illustrations and more details on these methods (API 1994). 



2.2 Waste Disposal in Caverns 

Use of salt caverns for waste disposal in the United States has been limited. A summary 
of current disposal practices is given in Veil et al. (1996) along with a discussion on using caverns 
for waste disposal in Canada, the United Kingdom, Germany, the Netherlands, and Mexico. 

In this study, we consider the disposal of nonhazardous oil field wastes in salt caverns. As 
discussed in Section 3, the majority of material disposed of would be tank bottom wastes (waste 
material from washing tanks, heater tanks, and stock tanks). This solid or sludge-like waste 
consists of accumulated heavy hydrocarbons, paraffins, inorganic solids, and heavy emulsions 
(EPA 1994b). Physically, the waste consists of approximately 50% water, 15% clay, 10% scale, 
10% corrosion products, 10% oil, and 5% sand. Its specific gravity ranges from about 1.5 to 2.0. 
The principal contaminants of concern in the waste include benzene, lead, arsenic, cadmium, 
chromium, and boron (see Section 3). 

Initially, the caverns would be filled with brine. Wastes would then be introduced as a 
slurry of waste and a fluid carrier (brine or fresh water). Three scenarios are possible for 
introducing the waste material: (1) the waste can be pumped down tubing to the bottom of the 
cavern and the displaced brine can be withdrawn through an annulus; (2) the waste can be 
pumped down an annulus and the displaced brine can be withdrawn through the tubing; and (3) 
the waste can be injected through one well and the brine withdrawn from another well. The first 
scenario is the most likely method because of associated costs and ease of use (Veil et al. 1996). 

As the slurry is injected, the cavern acts as an oil/water/solids separator. The heavier 
solids sink to the bottom of the cavern and form a pile. Any free oils and hydrocarbons float to 
the top of the cavern, because they are less dense than water. An organic blanket could be 
injected into the cavern to prevent additional leaching of the cavern's roof by water that is not 
fully saturated with salt. Clays in the slurry can mix with the brine, forming a suspension above a 
brine/waste interface. Clean brine displaced by the incoming slurry would be removed from the 
cavern and either sold as a product or disposed of in an injection well. 

Early in the life of the disposal cavern, clean brine is withdrawn from hundreds of feet 
above the surface of the waste pile or interface. As the cavern fills, the brine becomes dirtier (i.e., 
it will have a higher clay and oil content). This dirty brine can produce operational difficulties 
(e.g., clogging of pumps) and additional expenses (Veil et al. 1996). The cavern is considered to 
be "full" of waste when disposed material being returned with the displaced fluid becomes a 
problem. When the cavern is full, the operator seals the cavern. 

2.3 Post-Closure Cavern Behavior 

Once the cavern has been filled with waste, the cavern would be sealed and the borehole 
plugged with cement. Bridge plugs would be placed in the well bore above and below water- 



bearing intervals to isolate these intervals permanently. This procedure is often used in the oil and 
gas industry to abandon wells. 

A waste-filled cavern that has been sealed is subject to a number of complex physical 
processes: reduction in cavern volume caused by salt creep (the process by which salt surrounding 
the cavern flows into the cavern space as a pseudo-fluid [Bishop 1986, Freeze et al. 1995]); 
convective mixing in the upper, brine-filled portion of the cavern; differential settling and 
compaction of solids; chemical reaction and compaction of the waste material; and an increase in 
pressure produced by the combined effects of salt creep and the addition of sensible heat (heat 
derived from the geothermal gradient vertically across the cavern — approximately 13°F per 
1,000 ft at a depth of 1,000 ft [Tomasko 1985]); 

During a transient period of several years after closure of a cavern filled with brine, 
pressure can exceed the lithostatic value (pressure in surrounding salt) because of thermal 
expansion of the brine. The amount of over-pressurization is a function of cavern size (Berest 
and Brouard 1995). Similarly, cavern pressure can exceed the lithostatic value after a longer time 
period when, due to salt creep, brine pressure will balance average lithostatic pressure, resulting in 
a slight excess of brine pressure at the top of the cavern (Langer et al. 1984; Wallner 1986).   This 
occurs because lithostatic pressure increases linearly with depth, while brine pressure is constant 
within the cavern. 

The presence of a small quantity of gas in the sealed cavern can mitigate the effects of 
pressure buildup because the gas drastically increases the cavern compressibility or decreases the 
cavern stiffness (Berest et al. 1997a). Gases can be produced in a sealed disposal cavern in a 
number of ways, including bacterial degradation of the waste, corrosion, and natural releases from 
the salt formation itself (e.g., carbon dioxide, hydrogen sulfide, hydrogen, methane, etc.). 
Bacterial degradation of organic material in the waste can generate such gases as carbon dioxide, 
hydrogen sulfide, and methane. However, for several reasons, bacterial action would not generate 
a large quantity of gas. For example, because many bacteria have a limited tolerance for salt, 
conditions in the cavern would not be conducive for bacterial growth and reproduction (Stanier et 
al. 1963; and Postgate 1965). Even if the bacteria could survive in brine, there are other natural 
curbs on their activity. For aerobic bacteria, the supply of oxygen would be limited (only 8 parts 
per million [ppm] of oxygen are in the fresh water that is in contact with air at 25 °C). For 
anaerobic conditions, bacteria could produce hydrogen sulfide gas if the waste contains sulfate. 
The hydrogen sulfide produced would, however, be water soluble and would dissolve in the brine. 
As the pressure in the cavern increased with time, the solubility of the hydrogen sulfide would also 
increase and minimize free-gas production. 

Metal components of the waste material could corrode and generate hydrogen gas, 
especially at low pH conditions (acid environment). Such processes are common causes for 
equipment failures in oil and gas production systems. In a waste cavern, pH would be controlled 
by the partial pressure of carbon dioxide. Ambient carbon dioxide levels in the cavern would not 



support a significant corrosion rate, and hydrogen gas would not be generated. The only other 
source of acid in oil field waste would be spent acid from well stimulations (Bradley 1992). If the 
pH of such wastes is adjusted to six or above prior to disposal, no significant gas production 
would occur. Because the principal waste material for this study is tank bottom material and not 
spent acids, little acid would be present and the production of hydrogen gas would be negligible. 

Gas production in caverns is also controlled by pressure effects. As the pressure in a 
cavern builds up, the gas production rates would fall correspondingly. This process would limit 
the volume of any gases produced. 

A recent study of the behavior of brine-filled, sealed caverns suggests that the permeability 
of the material surrounding the cavern can also influence pressure buildup (Wallner and Paar 
1997). Because of a very slow pressure increase within a sealed salt cavern, the pressure at the 
top of the cavern would only exceed the lithostatic value after a long time (on the order of 
thousands of years for a 1,000-ft tall cavern). Because the rock salt formation becomes 
permeable if the fluid pressure exceeds the stress in the salt, small leakage rates of fluids from the 
top of the cavern are predicted. This leakage would compensate for the overpressurization at the 
top of the cavern and return the system to an equilibrium condition. 

Details on the pressurization of a sealed cavern that is filled with NOW are currently 
unavailable, although the behavior is expected to be similar to that discussed above with the 
exception that the compressibility of the wastes may alter the time scale and magnitude of the 
system response. More study of actual waste disposal caverns would help to clarify this issue. 

2.4 Cavern Release Scenarios 

In assessing risks to the public from disposing of NOW in caverns, potential release modes 
must be determined. At the present time, there is little information on accidents for cavern 
disposal systems because there are only a few disposal caverns in operation and they have not 
been operating for very many years. However, what little accident information exists from 
disposal and storage caverns indicates that the caverns are safe and that the only accidents that 
have occurred were associated with surface facilities. Because insufficient information exists for 
quantifying release probabilities for cavern disposal, results from the liquid petroleum gas (LPG) 
storage industry and the Strategic Petroleum Reserve (SPR) are used in this study as a basis for 
identifying potential release scenarios. 

Although LPG industries and the SPR have a long history of safe operations, a statistically 
meaningful data base for risk analysis is absent. To overcome this difficulty, a subjective, 
semiquantitative methodology was developed by Radian Corporation to evaluate risks for the 
LPG industry (Radian Corporation 1995). This methodology, developed by a panel of experts in 
the field of salt-cavern conversion for LPG storage, was based on a modified-Delphi approach 
(Brown and Helmer 1964) in which variability of the estimated parameters are reduced through 
group interaction. 

10 



The Radian study identified 22 accident scenarios that could lead to releases to the 
environment. These accident scenarios can be grouped into three general categories: (1) cavern 
development and conversion, (2) cavern filling, and (3) post-closure releases. In this study, 
impacts were analyzed for only the last of the accident scenarios identified, post-closure releases. 
Impacts from the first two scenarios are better addressed in a second tier assessment, in which 
site-specific information would be used and more detailed design parameters would be defined. 

Post-closure releases can be classified under the following categories for the present 
study: inadvertent intrusion; failure of the cavern seal; release of contaminated fluid through 
cracks, leaky interbeds, or nonhomogeneous zones composed of higher permeability material; and 
partial cavern roof fall. 

11 



3. Contaminants of Potential Concern 

In a standard risk assessment, the first step is collecting and evaluating data. One result of 
the data collection exercise is the identification of contaminants of potential concern. 
Contaminants of potential concern at a site are those that may be hazardous to human health 
and/or the environment under current or future site conditions. Selecting contaminants of 
potential concern helps focus the risk assessment on those contaminants that may be of potential 
significance to human health. 

It is important to select contaminants of potential concern for several reasons. If all 
possible contaminants were considered, the risks associated with naturally occurring contaminants 
could drive the assessment. For example, high background levels of particular contaminants, such 
as manganese, could obscure risks related to oil field wastes. Also, the level of effort and the cost 
of analysis increase with the number of contaminants being evaluated. Probably hundreds of 
contaminants associated with nonhazardous oil field wastes could be identified, depending on the 
types of crude that were produced, the types of drilling muds used, and the geochemistry of the 
formation from which the oils were extracted. 

As the risk assessment is conducted, it may be determined that the risks associated with 
some potential contaminants are insignificant and can be dropped from further consideration. For 
example, the ability of some potential contaminants to be transported may be insufficient to allow 
them to come in contact with humans. In such cases, the contaminant would not be considered 
further in the risk assessment. 

The term nonhazardous oil-field waste should not be interpreted to mean that no 
hazardous substances are found in oil-field wastes. In 1988, EPA made a determination that 
exempted wastes from the exploration, development, and production of crude oil, natural gas, and 
geothermal energy from regulation as hazardous under Subtitle C of the Resource Conservation 
and Recovery Act (RCRA). In 1993, EPA added many other wastes that were uniquely 
associated with exploration and production operations to those already exempted from RCRA 
Subtitle C requirements. Thus, exempt wastes include drilling fluids, produced water, and other 
wastes associated with the exploration, development, or production of crude oil, natural gas, or 
geothermal energy. However, even though a waste is exempted from Subtitle C requirements, it 
may still contain hazardous contaminants. In its regulatory determination, EPA concluded that 
the wastes exempted from regulation under Subtitle C could be better controlled through 
improvements to existing state and Federal regulatory programs. 

The current study is a preliminary, generic risk assessment; collecting the primary data 
needed to identify contaminants of potential concern is beyond its intended scope. Rather, results 
of the analysis presented in EPA's 1987 Report to Congress (EPA 1987) and a later draft 
pertaining to Selected Associated Wastes (EPA 1994b) were used to identify contaminants of 
potential concern. 
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As described in its Report to Congress, EPA used waste sampling and analysis data to 
characterize drilling wastes and produced water for quantitative risk modeling. Limited available 
data prohibited the EPA from developing separate waste-stream characterizations for various 
geographic zones; as a result, one set of waste characteristics was used to represent the nation. 
The major factors EPA used in selecting contaminants of concern were (1) median and maximum 
concentrations in the waste samples, (2) frequency of detection in the waste samples, (3) mobility 
in groundwater, and (4) concentrations at which human health effects, aquatic toxicity, or 
resource damage start to occur. By using this screening process, EPA selected several chemicals 
considered likely to dominate risk estimates. These chemicals included arsenic, benzene, boron, 
cadmium, and chromium (VI). 

The 1987 Report to Congress focused primarily on produced water and drilling muds. 
Because the EPA estimated that these two types of waste constituted over 98% of the industry 
waste stream in 1988, the EPA began evaluating the relative hazards posed by various associated 
waste streams, including tank bottoms, oily debris, workover fluids, produced sand, and 
emulsions.   It found that tank bottom samples exceeded the RCRA toxicity characteristics for 
benzene and lead. On the basis of these two EPA studies, the contaminants of concern for salt 
cavern disposal are arsenic, benzene, boron, cadmium, chromium, and lead. 

Because these contaminants may behave differently in the environment than in the 
laboratory, an evaluation of the fate and transport mechanisms for each contaminant is presented 
in Section 4. On the basis of that evaluation, combined with a consideration of the hydrogeologic 
conditions in areas where cavern disposal is likely to occur (Section 5) and an assessment of 
potential release modes and exposure pathways (Section 6), a subset of the contaminants listed 
above that have the ability to produce human health risks was identified. Because risk is a 
function not only of the probability of exposure, but also of the potential for harm due to the 
chemical, the toxicity of these contaminants must also be assessed. Section 7 addresses the 
toxicity of this subset of contaminants, and in Section 8, the risks associated with exposure to 
releases of those contaminants considered dangerous to humans are estimated. 
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4. Fate and Transport for Contaminants of Potential Concern 

In this section, the fate and transport of the contaminants of potential concern for salt 
cavern disposal is described. Specific information is provided for benzene, lead, arsenic, 
cadmium, chromium, and boron. This information is used in estimating contaminant 
concentrations at the location of a receptor for risk assessment. 

4.1 Benzene 

Benzene (C6H6) is the most important aromatic hydrocarbon in this study because of its 
physical properties. Benzene is unsaturated and reacts to add hydrogen and other elements to its 
ring of six carbon atoms. 

Benzene, also known as annulene, carbon oil, and coal naphtha, is a clear, colorless to 
light yellow, watery liquid with an aromatic or gasoline-like odor. Benzene has a density less than 
that of water (0.8765 g/cm3) (Mackay et al. 1992). 

Benzene is a Class A carcinogen that has an EPA maximum contaminant level (MCL) of 
0.005 mg/L (EPA 1994a). It is soluble in water (1.780 g/L at 20°C for fresh water) and readily 
volatilizes (changes from the aqueous to the gas phase) with a dimensionless Henry's Law 
constant of 0.2199 (Montgomery 1991; Montgomery and Welkom 1991). The Henry's Law 
constant gives the ratio of a compound's saturated vapor concentration to its concentration in the 
associated liquid phase and is an index of partitioning between dissolved and gaseous phases 
(Hern and Melancon 1987). For benzene, the effective half-life for volatilization is about 
4.8 hours (Montgomery 1991; Montgomery and Welkom 1991). In saline water, the solubility of 
benzene decreases (Stumm and Morgan 1981). 

In water, benzene has a distribution coefficient (mass of solute sorbed on solid surfaces 
per solid mass divided by the mass of solute per volume of solute [Freeze and Cherry 1979]), Kd, 
of 0.62 mL/g (Lyman et al. 1992). Sorption of benzene onto a solid surface produces a 
retardation of benzene's transport velocity in groundwater; that is, the velocity of the center of 
mass of a contaminant plume of benzene, Vc, will move at a retarded velocity of V/R, where V is 
the velocity of groundwater and R is a retardation coefficient. Retardation coefficients can be 
estimated by using the following relationship (Freeze and Cherry 1979): 

R = i + 2^1 (1) 
<D 

where pb is the bulk density of the matrix material, and <& is its porosity (Freeze and Cherry 
1979). For a bulk density of 1.7 g/cm3 and a porosity of 0.1 (typical values for this study [Freeze 
and Cherry 1979]), the retardation coefficient for benzene is about 10. 
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Under aerobic conditions, benzene has an effective biodegradation half-life of about 
10 days; for anaerobic conditions, its half-life is about 2 years (Howard et al. 1991). If exposed to 
air and sunlight, benzene undergoes photo-oxidation, with an effective half-life of 5-16 days; 
however, it does not apparently undergo hydrolysis (i.e., it does not react with water to form 
another compound [Mackay et al. 1992]). 

As the above data show, benzene is very soluble in water, and once in a groundwater 
system, it is very mobile. Because of biodegradation and volatilization, however, it would have a 
somewhat limited range of travel in an aquifer. When biodegrading, benzene would be mineralized 
to form water (H20) and carbon dioxide (C02). Possible transformation products include cis- 
benzene glycol accompanied by partial dehydrogenation, yielding catechol, or cis,cis-muconic acid 
and oc-hydroxymuconic semialdehyde (Montgomery and Welkom 1991). Because little 
information is available on the toxicity or fate and transport of these intermediate products, and 
their behavior can be site-specific, complete biodegradation of the decay products of benzene is 
assumed for this study. 

4.2 Lead 

Lead is generally found in the divalent form and tends to form relatively insoluble 
compounds with such common anions as hydroxide and sulfate. An insoluble precipitate can also 
form with sulfide, which can be present under reducing conditions. Lead can also form insoluble 
complexes with carbonate at pH values higher than 5.4 (Adriano 1986). In the presence of clays, 
lead is very immobile. An approximate Kd for lead is 900 mL/g (Baes and Sharp 1983; Baes et al. 
1984). By using Equation 1 with a bulk density of 1.7 g/cm3 and a porosity of 0.1, the retardation 
coefficient for lead would exceed 15,000. The maximum recommended concentration of lead in 
drinking water is 0.015 mg/L (EPA 1994a). 

Because of its low solubility, large distribution coefficient, and very large retardation 
coefficient, further analyses of lead-associated risks are not presented in this study. 

4.3 Arsenic 

Arsenic generally forms insoluble complexes, typically reacting with hydrous oxide 
coatings and various anions. For example, the solubility of pentavalent arsenic sulfide (AsjSj) is 
0.000136 g/L in cold, fresh water (CRC 1968). In brine, the solubility of arsenic would be less 
(Stumm and Morgan 1981). Arsenic readily adsorbs onto clays, iron or manganese compounds, 
or aluminum complexes. Arsenic can also be immobilized by forming complexes or chelates with 
iron or calcium (Callahan et al. 1979). The distribution coefficient for trivalent arsenic reported 
for agricultural soils and clay ranges from about 1-8 mL/g; for pentavalent arsenic, the range is 
approximately 2-18 mL/g (Baes and Sharp 1983).   For this study, a Kd of 10 mL/g was 
assumed. By using Equation 1 with a bulk density of 1.7 g/cm3 and a porosity of 0.1, the 
retardation coefficient for arsenic would be about 170 (rounded to 200). The MCL for arsenic is 
0.05 mg/L (EPA 1994a). 
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Because of the low solubility and large distribution coefficient of arsenic, its concentration 
and mobility in groundwater would be very low. 

4.4 Cadmium 

Cadmium can exist as soluble or insoluble species or can be immobilized by sorption onto 
clays or iron oxides. Cadmium forms soluble complexes and insoluble precipitates with 
carbonates and hydroxide ions, and it can also exist as the hydrated ion (Baker and Amacher 
1982). Under acidic conditions, cadmium can be relatively mobile, with its mobility decreasing as 
increasing pH and ion exchange capacity increase (Lu et al. 1975). In soil that contains clay and 
iron hydroxides, cadmium has a low mobility and commonly coprecipitates with iron and 
manganese hydroxides. 

The solubility of cadmium is generally low; however, the solubility of cadmium chloride is 
about 140 g/L in cold, fresh water, and that of cadmium hydroxide is about 0.00026 g/L (CRC 
1968). In brine, this solubility would be less (Stumm and Morgan 1981). The Kd values for 
cadmium in soil and clay range from about 1.3 to 27 mL/g (Baes and Sharp 1983). For this study, 
a Kd value of 3 mL/g was used. By using Equation 1 with a bulk density of 1.7 g/cm3 and a 
porosity of 0.1, the retardation coefficient for cadmium would be about 50. Cadmium has an 
MCL of 0.005 mg/L (EPA 1994a). 

Because of the presence of iron in the tank bottom wastes, cadmium is likely to precipitate 
out as a hydroxide. Given the low solubility of cadmium hydroxide and its moderate rate of 
sorption, the mobility of cadmium in groundwater would be low. 

4.5 Chromium 

The predominant form of chromium likely to occur in the vicinity of a failed salt cavern 
would be insoluble, trivalent chromate (Cr203) (ATSDR 1989). Soluble chromate generally forms 
precipitates, with hexavalent chromium undergoing anion adsorption and reduction, and trivalent 
chromium undergoing adsorption, hydrolysis, and chelation (Reisenauer 1982). Manganese and 
iron oxides can affect chromium adsorption. Adsorption of all chromium species can occur in 
substrates in the pH range of 6 to 7.5, making the chromium fairly immobile. Adsorption of the 
hexavalent form can decrease with increasing pH, while adsorption of the more predominant 
trivalent form can increase with increasing pH, probably as a result of cation exchange (Adriano 
1986). In the presence of organic matter, hexavalent chromium is converted to the more insoluble 
trivalent form. The hydrated form of trivalent chromium sulfate [Cr2(804)3] nas a solubility of 
about 120 g/L in cold, fresh water (CRC 1968). Brine conditions would be expected to reduce 
this solubility. The Kd values reported for soil and clay range from about 1.2 -1,800 mL/g for the 
hexavalent form and 470 -150,000 mL/g for the trivalent form (Baes and Sharp 1983). A Kd 

value of 30 mL/g was assumed for this study. By using Equation 1 with a bulk density of 1.7 
g/cm3 and a porosity of 0.1, the retardation coefficient for chromium would be about 500. Total 
chromium has an MCL of 0.1 mg/L (EPA 1994a). 
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Because of low solubility and high distribution coefficients, both trivalent and hexavalent 
forms of chromium are expected to have low concentrations and mobilities in groundwater. The 
mobility of the hexavalent form, however, is expected to be greater than that of the trivalent form. 

4.6 Boron 

Boron is a nonvolatile metalloid that occurs in combination with most of the other 
elements. Boron readily hydrolyzes in water to form the electrically neutral, weak monobasic acid 
H3BO3 and the monovalent ion B(OH)4 (ATSDR 1990). Although most boron compounds are 
highly soluble in water (Rai et al. 1986), boron may be precipitated with aluminum, silicon, or iron 
in the form of fairly insoluble hydroxyborate compounds on the surfaces of minerals. In elemental 
form, boron is insoluble in water (Windholz et al. 1983). The adsorption of boron may not be 
reversible in some media. This irreversibility may be the result of solid-phase formation on 
mineral surfaces. Little information is available on boron sorption; however, for clays, Kd may be 
as high as 20 mL/g, with a range for soils of 0 to 10 mL/g (Sheppard et al. 1984). For this study, 
a Kd value of 8 mL/g was assumed. By using Equation 1 and values for bulk density of 1.7 g/cm3 

and for porosity of 0.1, the retardation coefficient for boron would be about 150. As of 1994, the 
EPA did not have any defined drinking water standards for boron, although its lifetime health 
advisory is 0.6 mg/L for a 70-kg adult (EPA 1994a). 

It is likely that boron would precipitate to form insoluble hydroxyborate compounds on 
mineral surfaces because of the iron and silicon content of the tank bottoms component of the 
wastes. Because of this precipitation, further analyses of boron-associated risks are not presented 
in this study. 
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5. Hydrogeology 

As discussed in Section 2, the majority of salt formations of interest for waste disposal 
occur along the Gulf Coast and in Texas and New Mexico, although other states, such as Kansas 
and Michigan, could also be considered as potential candidate states for NOW disposal in salt 
caverns. The following sections discuss hydrogeological conditions for the Gulf Coast, the 
western Texas panhandle, and New Mexico. A composite of these areas is then used for a generic 
analysis of disposing of NOW in a hypothetical salt cavern in domal salt. Additional site-specific 
calculations are recommended for future studies in other states and bedded salt formations. 

5.1 Gulf Coast Hydrogeology 

Salt caverns along the Gulf Coast of the United States are located in the Coastal Plain 
Physiographic Province (Back et al. 1988). This province is underlain by a gulfward thickening 
wedge of unconsolidated to semiconsolidated sedimentary rocks (sand, silt, and clay derived from 
erosion of nearby continental upland areas). These sediments overlie consolidated rocks of 
Mesozoic Age and range in thickness from a few feet near their landward limit to more than 
30,000 ft in southern Louisiana. 

As part of the Gulf Coast Regional Aquifer-System Analysis (GCC RASA) program, the 
depth to groundwater was evaluated for a 230,000-mi2 study area that included coastal regions in 
Texas, Louisiana, Mississippi, and Florida (Williams and Williamson 1989). Based on data from 
6,825 wells, the depth to the water table ranges from 0 to 74 ft, with a median value of 20 ft. 
This shallow groundwater system is primarily composed of sands interbedded with deposits of silt 
and clay. Where the silts and clay have been eroded and the aquifer is in communication with the 
atmosphere, the aquifer is unconfined. Confined to semiconfined conditions exist where low- 
permeability clays and silt overlay the more permeable sands (Hanor 1993). Beneath the shallow 
groundwater system are other sequences of clays and silts, interspersed with beds of sand. The 
sand areas constitute other potential aquifers that are predominantly confined (Capuano and Jan 
1996). 

Recharge to the shallow groundwater system is derived from precipitation. The majority 
of recharge occurs in areas where the clay and silt layers are absent. Discharge of this aquifer 
occurs to surface waters, underlying deeper aquifers, and pumping wells. 

5.2 Texas and New Mexico Hydrogeology 

Bedded salt occurs in the Texas panhandle area and West Texas, as well as in central and 
southeastern New Mexico. These bedded salts are located, for the most part, in deep formations 
(the top of salt occurs at a depth of 500 to 2,000 ft below the land surface, and the salt thickness 
is about 1,000 to 3,000 ft thick). Although most of these bedded salts occur below 1,000 ft, some 
of the bedded salts in west Texas can be much shallower (e.g., one of the Permian Brine Sales' 
caverns starts at a depth of about 700 ft [Hickerson 1995]). 
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Overlying the bedded salt layers are the Ogallala fluvial aquifer, which is composed of 
stream and river deposits, and the Dockum aquifer, which is composed of fluvial and lacustrine 
(lake) deposits (Bassett and Bentley 1982). These aquifers make up a shallow, fresh-water 
system that is used for domestic, municipal, industrial, and agricultural purposes. The combined 
thickness of these two aquifers can be as great as 2,300 ft (Bair et al. 1985). The Ogallala is the 
shallower of the two aquifers and occurs at a depth that ranges between 20 and 400 ft (Wood and 
Sanford 1995). It has a thickness that ranges from 0 to 800 ft (Seni 1980), and it underlies about 
134,000 mi2 of land that extends from Nebraska to New Mexico (Back et al. 1988). Its principal 
composition is sand and gravel. 

The Dockum aquifer lies below the Ogallala aquifer. Locally, its depth is variable; it can 
outcrop at the surface or occur as deep as 800 ft below the ground. It is typically composed of a 
sandstone and conglomerate unit (fluvial) overlying a fine silt and clay unit (lacustrine). The thick 
Permian evaporite-bearing unit beneath the Dockum is an aquitard and a barrier to vertical 
groundwater flow. Depth to bedded salt ranges from about 500 to 2,000 ft. The uppermost 
extensive salt is the Salado Formation. Where this unit has been dissolved, various older 
formations (e.g., Seven Rivers, Grayburg, San Andres, and Castile) contain the uppermost salt 
units. In some areas, salt has been completely removed. 

Bedded salts are being developed for low-level nuclear waste disposal at the Waste 
Isolation Pilot Plant (WIPP) in New Mexico. The facility has been constructed and will shortly 
begin operation. It is located at a depth of 2,150 ft below the ground surface in the Salado 
Formation (DOE 1990). The Ogallala and Dockum aquifers are absent in this area of New 
Mexico, and the shallowest groundwater of consequence occurs in the Culebra Dolomite of the 
Rustler Formation at a depth of about 750 ft. 

Recharge to the shallow groundwater system in the semi-arid Texas/New Mexico 
environment is derived from precipitation. Wood and Sanford (1995) estimate the annual 
recharge to be 11±2 mm/yr. Recharge is small because of high potential evaporation, plant 
transpiration, limited precipitation, and runoff. In the past, discharge was to springs; other, 
deeper, groundwater systems; and pumps. Because of heavy pumping, most of the discharge 
springs are now dry, and the only discharge is to deeper aquifers. 

In general, water quality in Texas and New Mexico decreases with depth. For example, 
the Rustler Formation water quality is generally poor, with total dissolved solids ranging from 286 
mg/L in Ward County to 157,000 mg/L in Winkler County. Chloride concentrations can be as 
high as 89,700 mg/L in Winkler County, Texas (Richey et al. 1985). Because of this poor water 
quality, water for public water supply, irrigation, industry, livestock, and rural domestic use is 
often obtained from overlying aquifers, such as the Santa Rosa Sandstone Formation in the 
Dockum and from the Cenozoic alluvium in the Delaware basin (including the Ogallala Aquifer, if 
present). In the Texas panhandle area, similar observations have been made on groundwater 
quality (Bair 1987); i.e., total dissolved solids and the concentration of brine increase with depth. 
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6. Release Calculations 

Impact analyses were performed for the general categories of cavern-release scenarios 
discussed in Section 2: inadvertent intrusion; failure of the cavern seal; release of contaminated 
fluid through cracks, leaky interbeds, or nonhomogeneous zones of higher impermeability; and 
partial cavern roof fall. Details on these analyses are presented in Section 6.2. Concentrations for 
the contaminants of potential concern presented in these sections are used for risk analyses in 
Section 8. 

For all of the release scenarios, the initial concentrations of contaminants leaving the 
cavern must be known. These concentrations are discussed in Section 6.1. 

6.1 Initial Concentrations for Contaminants Released from a Cavern 

In the event of a release, some of the brine overlying the waste would leave the cavern. 
This brine will contain dissolved contaminants of potential concern. No data are available to 
show the chemical characteristics of the cavern brine at the time of release, because no disposal 
cavern has yet been closed. After the cavern is closed, the chemical constituents of the waste will 
reach an equilibrium solubility with the overlying brine. Theoretical solubility values for the four 
constituents of potential concern (benzene, arsenic, cadmium, and chromium) are available in the 
literature (e.g., ATSDR 1989; CRC 1968; Montgomery 1991; and Montgomery and Welkom 
1991), but these values are based on the solubility of the contaminants in cool, fresh water using 
pure laboratory-grade chemicals and are not relevant for in-cavern conditions. 

The conditions found in a closed cavern will have a significant effect on final solubility. 
Two factors that are especially important are the salt content and the pH of the water in the 
cavern. Fresh water will dissolve more organic materials (e.g., benzene) than brine. 
Consequently, the brine will reach an equilibrium benzene concentration with the waste that is 
lower than the theoretical fresh water solubility. In addition, the brine in the cavern will contain 
chloride, sulfate, sodium, calcium, and hydroxide. Many toxic metals form insoluble precipitates 
with one or more of these ions, which will limit the solubility of the metals. Also some ions of 
arsenic form insoluble calcium compounds. 

One of the main types of waste disposed of in salt caverns is drilling waste, which tends to 
be alkaline. The presence of a high-pH waste will cause the cavern brine to have a pH higher than 
neutral. The solubility of metals is much higher at low pH values than at the higher pH values 
expected in the cavern brine. Therefore, the brine will reach equilibrium metals concentrations 
with the waste that are somewhat lower than the theoretical fresh-water solubilities. 

One way of estimating the chemical characteristics of the cavern brine is to look at other 
brines that have been in contact with both crude oil and many of the solid materials that will be in 
the wastes for a long enough time to reach equilibrium values. Perhaps the best example of such 
brines is produced water. Produced water characteristics vary somewhat, but extensive data are 
available to estimate chemical concentrations. The following analyses contain data on 

20 



concentrations of chemical constituents in produced water: 
• As part of its proposed effluent limitations guidelines for the coastal oil and gas industry, 

EPA sampled ten coastal oil and gas facilities for produced water constituents 
(SAIC 1994). 

• EPA summarized several produced water studies covering 55 facilities as part of its final 
effluent limitations guidelines for the offshore oil and gas industry (EPA 1993). 

• EPA (1987) selected median and upper 90th percentile concentrations for arsenic and 
benzene in produced water as inputs to a risk assessment model. 

Concentration ranges for the constituents of concern cited in these three studies are given in 
Table 6-1. 

Another approach for estimating fully saturated brine concentrations is to look at the 
relative proportions and concentrations of the major waste types that are placed into the caverns 
and to estimate how much of those wastes will leach into the cavern brine. The operators of the 
four disposal caverns in Texas were asked to provide qualitative estimates of the proportions of 
different types of wastes entering the caverns. Depending on the operator, drilling wastes make 
up from 20-50% and tank bottoms make up about 50-60% of the total incoming 
waste stream1. Miscellaneous wastes make up the remainder. In many cases, the solids in the 
wastes contain chemical concentrations much higher than those reported for produced water. 
However, under conditions where wastes are in contact with water, concentrations of chemicals 
in the surrounding water are typically much lower than those in the waste. The amounts of 
chemicals likely to leach out of the waste when it is exposed to water have been estimated by 
EPA. 

The EPA (1987) provides comparative data on both drilling waste solids and solids that 
have undergone the toxicity characteristic leaching procedure or TCLP (40 CFR 261, Appendix 
II). The TCLP test measures a waste's tendency to leach into water. The TCLP can serve as an 
analog of the extent to which wastes in a cavern will leach into the overlying brine. In the TCLP, 
solids samples are extracted by mixing them for 18 hours in a flask containing water adjusted to 
an acidic pH. Because metals are more likely to leach out of a solid under low pH conditions, the 
TCLP test is more conservative than leaching at a neutral pH. Under these conservative, low-pH 
conditions, the upper 90th percentile TCLP results are much lower than the results from analysis 
of drilling waste solids, which had been measured without being subjected to leaching (see 
Table 6-1). These data support the premise that only a small fraction of the total waste is likely to 
leach into water or the cavern brine. 

The other major type of waste disposed of in caverns is tank bottoms. The EPA (1994b) 

telephone conversations between John Veil, Argonne National Laboratory, Washington, DC, 
and Russ Hickerson, Permian Brine Sales, Odessa, TX; Grady Moore, Taylor Disposal Operating, 
Inc., Carthage, TX; and Tom Voskamp, Voskamp Exploration, Midland, TX, on March 12, 1997. 

21 



provides extensive characterization of tank bottoms. The range of TCLP values and analysis of 
samples as reported in EPA (1994b) for tank bottoms at production facilities (the predominant 
source of tank bottoms likely to go to the caverns) are shown in Table 6-1. Only a small fraction 
of the total tank bottom chemical concentration is likely to leach into water or the cavern brine. 

For the initial concentrations of constituents to be used in the fate and transport modeling 
in this report, we have chosen the highest concentration for each constituent of concern from the 
(a) produced water data, (b) drilling waste TCLP data, and (c) tank bottoms TCLP data. In each 
of these data sets, we already are looking at the maximum concentrations, which typically are 
many times higher than average values. The concentrations of the contaminants of potential 
concern in brine when they leave the cavern under different release modes are as follows: 
benzene, 20.4 mg/L; arsenic, 1.7 mg/L; cadmium, 0.29 mg/L; and chromium, 0.85 mg/L. 

6.2 Cavern Release Scenarios 

Five release scenarios are discussed in this section: inadvertent intrusion, which could 
produce a release of cavern fluid to the ground surface; failure of the cavern seal, which could 
release contaminated fluid to the groundwater (the release could be either at the depth of the 
cavern or at more shallow depths); release of contaminated fluid through cavern cracks; release of 
contaminated fluid through leaky interbeds or non-homogeneous zones of higher permeability 
material; and a partial cavern roof fall, which could release contaminated fluid to deep or shallow 
groundwater depending on the condition of the cavern seal. Calculations for these release 
scenarios are discussed below. 

6.2.1 Inadvertent Intrusion 

In the inadvertent intrusion scenario, an exploratory well for oil or minerals penetrates a 
hypothetical waste disposal cavern that has an initial brine volume of one million ft3 (about 7.5 
million gallons).   Assuming that the cavern contains 750,000 ft3 of NOW when full, 
approximately 2 million gallons of brine lie above the NOW.   Groundwater wells probably would 
not reach the cavern because drinking or irrigation water could be obtained at shallower depths, 
and groundwater at the depth of the cavern would probably not be potable because of brine 
(Section 5). Based on an average modulus of elasticity of 337,000 psi (Streeter 1961), a depth of 
1,500 ft, and an initial pressure in the cavern equal to the lithostatic pressure (about 1,500 psi for 
a depth of 1,500 ft assuming a lithostatic pressure gradient of 1 psi per ft [SMRI1997]), a 
maximum of about 2,000 gallons of contaminated fluid would flow from the cavern toward the 
surface.   This value is about 0.1% of the fluid present in the cavern. In addition to brine and 
dissolved waste constituents, drilling muds and other associated fluids would also flow toward the 
surface. 

If the blowout-protection system of the well failed, fluids from the cavern could spill onto 
the ground surface and form a pool in the vicinity of the well pad or be discharged into a lined 
pond. If the discharge occurs directly to the ground and the local topography is depressed, a 
small surface pond would form. If the pond has a radius of 25 ft, the depth of the spill would be 
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provides extensive characterization of tank bottoms. The range of TCLP values and analysis of 
samples as reported in EPA (1994b) for tank bottoms at production facilities (the predominant 
source of tank bottoms likely to go to the caverns) are shown in Table 6-1. Only a small fraction 
of the total tank bottom chemical concentration is likely to leach into water or the cavern brine. 

For the initial concentrations of constituents to be used in the fate and transport modeling 
in this report, we have chosen the highest concentration for each constituent of concern from the 
(a) produced water data, (b) drilling waste TCLP data, and (c) tank bottoms TCLP data. In each 
of these data sets, we already are looking at the maximum concentrations, which typically are 
many times higher than average values. The concentrations of the contaminants of potential 
concern in brine when they leave the cavern under different release modes are as follows: 
benzene, 20.4 mg/L; arsenic, 1.7 mg/L; cadmium, 0.29 mg/L; and chromium, 0.85 mg/L. 

6.2 Cavern Release Scenarios 

Five release scenarios are discussed in this section: inadvertent intrusion, which could 
produce a release of cavern fluid to the ground surface; failure of the cavern seal, which could 
release contaminated fluid to the groundwater (the release could be either at the depth of the 
cavern or at more shallow depths); release of contaminated fluid through cavern cracks; release of 
contaminated fluid through leaky interbeds or non-homogeneous zones of higher permeability 
material; and a partial cavern roof fall, which could release contaminated fluid to deep or shallow 
groundwater depending on the condition of the cavern seal. Calculations for these release 
scenarios are discussed below. 

6.2.1 Inadvertent Intrusion 

In the inadvertent intrusion scenario, an exploratory well for oil or minerals penetrates a 
hypothetical waste disposal cavern that has an initial brine volume of one million ft3 (about 7.5 
million gallons).   Assuming that the cavern contains 750,000 ft3 of NOW when full, 
approximately 2 million gallons of brine lie above the NOW.   Groundwater wells probably would 
not reach the cavern because drinking or irrigation water could be obtained at shallower depths, 
and groundwater at the depth of the cavern would probably not be potable because of brine 
(Section 5). Based on an average modulus of elasticity of 337,000 psi (Streeter 1961), a depth of 
1,500 ft, and an initial pressure in the cavern equal to the lithostatic pressure (about 1,500 psi for 
a depth of 1,500 ft assuming a lithostatic pressure gradient of 1 psi per ft [SMRI1997]), a 
maximum of about 2,000 gallons of contaminated fluid would flow from the cavern toward the 
surface.   This value is about 0.1% of the fluid present in the cavern. In addition to brine and 
dissolved waste constituents, drilling muds and other associated fluids would also flow toward the 
surface. 

If the blowout-protection system of the well failed, fluids from the cavern could spill onto 
the ground surface and form a pool in the vicinity of the well pad or be discharged into a lined 
pond. If the discharge occurs directly to the ground and the local topography is depressed, a 
small surface pond would form. If the pond has a radius of 25 ft, the depth of the spill would be 
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about 1 inch without considering evaporative losses. For a spill this small, fluids from the cavern 
would not reach the underlying unconfined aquifer that occurs at a median depth of 20 ft (Section 
5.1), but would form a contaminated zone in the unsaturated soil. If the porosity of the soil is 0.3 
(Freeze and Cherry 1979), a mass-conservation calculation shows that the penetration depth of 
the fluids from the cavern would be less than 6 inches. Mobilization of contaminants out of the 
contaminated zone could then occur by leaching. However, remediation activities at the site (e.g., 
removal of contaminated soil) would occur before the contaminants could dissolve and be 
transported by advection and dispersion to the water table. 

In addition to lasting for a short duration, the pond water would be very unappetizing for 
ingestion (i.e., the water would have a very high turbidity because of the drilling mud, it would be 
very salty [saturated brine], it would be oily because of the presence of organic materials, and it 
would probably have an unpleasant odor). Because the volume of released fluid for this scenario 
would be small, the effects would be of very short duration, the liquid would not be potable, and 
such a spill would be quickly remediated, the scenario was eliminated from further analyses. 

6.2.2 Release through the Cavern Seal 

For this scenario, the seal that keeps liquids within the cavern is assumed to fail and 
release brine and contaminants to the well bore. As discussed in Section 2.4, the well bore would 
have cement plugs installed during cavern closure and abandonment. With time, the well casing 
may deteriorate because of the presence of brine in the vicinity of the caprock or the top of the 
cavern if a caprock is not present. For anticipated conditions, the well casing will corrode and fail 
near the top of the cavern first. With additional time, the well casing will fail at shallower depths. 

Once the cavern is full of waste, it would be sealed and abandoned. At the time of sealing, 
the cavern would be mostly filled with solids and semisolids that are not fully compacted. Brine 
would remain between the top of the cavern and the top of the waste mass. 

As discussed in Section 2.4, the pressure in the cavern would increase because of the 
combined effects of the addition of sensible heat from the surrounding salt and salt creep. 
Although the pressurization of sealed caverns containing liquids or dry granular wastes is 
currently under investigation (e.g., Langer et al. 1984; Wallner 1986; Berest and Brouard 1995; 
Wallner and Paar 1997; and Berest et al. 1997a), little research has been directed at predicting 
pressure behavior in caverns containing NOW. Future work should be performed to reduce the 
uncertainty in this process. 

For this scenario, the pressure in the cavern is assumed to reach a high enough value that 
the cavern seal fails because of a crack in the plug, dissolution of salt around the seal, or by some 
other means. Contaminated fluid then moves up the well bore toward the ground as the pressure 
in the cavern is reduced to the hydrostatic value. 

Assuming that the cavern had an initial brine volume of 1,000,000 ft3, and that it was filled 
to three-quarters of its capacity with NOW, about 250,000 ft3 of free brine and 750,000 ft3 of 
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waste would be present. If the cavern failed at a pressure equal to the lithostatic value 
(approximately 1,500 psi for a cavern located at a depth of 1,500 ft), a maximum of only about 
0.1% of the free liquid (about 2,000 gal) would exit the cavern because of the effects of 
compressibility (Streeter 1961), if the well bore was free of liquid and at atmospheric pressure. If 
the well bore contained water, or if the released volume was greater than the volume of the well 
bore up to the location of the deepest bridge plug, less than 0.1 % of the fluid would escape from 
the cavern. For conservative results, this study assumes that the full 0.1% volume would be 
released. 

Flow of the released fluid would be greatly restricted in the well bore at the locations of 
the cement bridge plugs.   Flow through the bridge plugs would resemble flow through a porous 
medium having a low hydraulic conductivity (about 1 x 10"8 to 1 x 10"5 cm/s), similar to that of 
cemented sandstone (Maidment 1993). If the cavern fluid moves up the borehole at a rate equal 
to the saturated hydraulic conductivity of the cement (Freeze and Cherry 1979), it would have a 
velocity between 3 x 10"5 and 0.03 ft/d. For a cavern at a depth of 1,500 ft, fluid would not reach 
the surface for about 140 years if the well casing remained intact, and evapotranspiration did not 
deplete the volume of free liquid near the ground surface. 

While moving up the borehole, fluid from the cavern could also move laterally into 
adjoining formations if the well casing had failed. Because the casing would probably be made of 
ordinary steel, there is a high probability that the casing would fail when exposed to groundwater 
containing brine over a time period ranging into the thousands of years. Two possible cases are 
considered under this scenario: (1) the casing fails at the depth of the cavern (at or near the cavern 
roof) and contaminated fluid is released to a deep aquifer, and (2) the casing fails at a shallow 
depth and releases fluid to a near-surface aquifer. Because of hydrogeological differences 
between the aquifers considered, these scenarios are discussed separately below. 

For a deep casing failure, fluid moving up the well bore would move into the deep aquifer 
and be transported laterally. The presence of low-permeability beds at shallower depths would 
prevent vertical transport of the contaminated fluid to overlying aquifers and the ground surface. 
Assuming that the well bore has a diameter of 2 ft and that the ambient groundwater velocity is 
10 ft/year, contaminated water would enter the surrounding porous medium for a period of about 
0.2 years. 

The extent and magnitude of contamination created by this type of release would depend 
on the hydrological properties of the material in the vicinity of the failed casing, the volume of 
fluid that is released, the duration of the discharge, and the transport properties of the 
contaminants. In the vicinity of the cavern, hydrological properties are unlikely to favor rapid 
transport of the contaminants. For example, the groundwater velocity at depth is estimated on the 
basis of engineering judgment to be less than 10 ft/yr. Because of adsorption and subsequent 
retardation (Section 4.1), contaminants (particularly metals) would be transported at even lower 
velocities. For example, cadmium, which has a distribution coefficient of 3 mL/g (Section 4.4), 
would have a retardation coefficient, R, of about 50 for an assumed bulk density of 1.7 g/cm3 and 
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a porosity of 0.10 (Equation 1). Therefore, the center of mass velocity of cadmium would be 50 
times less than that of the groundwater (0.2 ft/yr). In 100 years, cadmium would travel about 
20 ft. 

Benzene would move much more quickly than the dissolved metals because of its greater 
mobility. As discussed in Section 4.1, benzene has a distribution coefficient of about 0.6 mL/g 
and a retardation coefficient of about 10. In 100 years benzene would, therefore, move about 100 
ft. Unlike the metals, however, benzene would be likely to degrade biologically with time. For 
the calculations presented in this study, benzene was assumed to have an effective half-life of 2 
years, the upper end of the values for anaerobic conditions presented in Section 4.1. In 100 years, 
its concentration would decrease by a factor of about 1.0 x 1015 (50 half-lives). 

In addition to the extent of contamination created by the release, the contaminant's 
concentration is also needed for risk assessment. In general, the downstream concentrations of 
contaminants depend on the length of time that the cavern acts as source of contaminated fluid. 
For either a release at the depth of the cavern or to a shallow aquifer, the cavern is assumed to 
depressurize to conditions in the well bore within one day. Fluid released during the 
depressurization would then be swept into adjacent aquifers by moving groundwater (10 ft/yr at 
the depth of the cavern and 100 ft/yr for a shallow release). Under these conditions, a two-foot 
well bore would act as a source of contamination for 0.2 and 0.02 years at the depth of the cavern 
and in a shallow aquifer, respectively. After the system depressurizes, salt creep would once 
again occur and the pressure in the cavern would increase, particularly if the point of failure self- 
heals. Because of this repressurization, the seal may again fail, and the process can then repeat 
itself as a series of short, pulsed releases. Because the time between releases would be long 
(repressurization is a slow process), the pulses would not interact with each other along the flow 
path. 

Contaminant concentrations in the exiting fluid are discussed in Section 6.1 and are listed 
in Table 6-1. Because of the short duration time of a pulse release scenario, little dilution would 
occur because of mixing with uncontaminated groundwater. The contaminant concentrations in 
the water adjacent to the failure point would, therefore, be the same as in the cavern. 

After release, the aqueous phase contaminants would be transported in the direction of 
lower hydraulic head (pressure) and would undergo sorption (loss of material to particle 
surfaces), dispersion (reduction in concentration produced by non-uniform fluid velocities), and 
degradation (decrease in concentration produced by chemical or biological interactions). 
Transport calculations were performed with a one-dimensional analytical solution to the 
governing partial differential equation incorporating advection, dispersion, and biodegradation 
(Tomasko 1991; 1994) to estimate the concentrations of benzene, cadmium, arsenic, and 
chromium at a lateral distance of 1,000 ft from the location of the casing failure, the assumed 
location of the nearest human receptor. 

For transport calculations, the groundwater velocity was assumed to be 10 ft/yr and 
dispersion was assumed to be scale dependent, with dispersivity set equal to one-tenth of the 
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travel distance (Lallemand-Barres and Peaudecerf 1978). Contaminant concentrations in the 
groundwater were evaluated at the location of a potential receptor at a time of 1,000 years in the 
future, a typical value for risk analyses. In the case of cadmium released to shallow aquifers, the 
maximum estimated concentration would reach the receptor after 334 years. This value is noted, 
where applicable, in the tables associated with Section 8 and is used in the risk calculations. A 
compilation of contaminant concentrations for these conditions is given in Table 6.2. As shown in 
Table 6.2, the concentration of benzene would be 0.0 mg/L at 1,000 years because of degradation 
along the flow path (approximately 500 half-lives). Values for arsenic and chromium would both 
be very small because of retardation along the flow path and the short duration of the release (0.2 
yr). 

For the second alternative considered for this release scenario, the cavern seal is again 
assumed to fail; however, the well bore casing at depth is assumed to be intact. Contaminated 
fluid then flows up the well bore and exits the casing at a failure point adjacent to a shallow 
groundwater aquifer such as the Dockum or the Ogallala. The initial concentration of the 
contaminants entering the system would be the same as for the scenarios discussed above (Table 
6-1), and there would be no substantial dilution. The duration of the source term would be ten 
times less than that used at depth because of the higher groundwater velocity in the shallow 
groundwater system (100 ft/yr). For a release to shallow groundwater, the concentrations (Table 
6.2) would be larger than those discussed above because of shorter travel time. The 
concentration of benzene, however, is still at 0.0 mg/L because of its biological degradation. In 
spite of the higher velocity and shorter travel time for a shallow groundwater release, the 
contaminant concentrations at the receptor 1,000 years after the release would all be much less 
than their MCLs discussed in Section 4 (Table 6.2). 

6.2.3 Release of Contaminated Fluid through Cracks 

During pressurization of the cavern because of the combined effects of thermal heating 
and salt creep, cracks might develop that would release fluid into the surrounding material, 
thereby reducing the pressure in the cavern. The volume of fluid released would be a function of 
the pressure in the cavern, the volume of the cracks, and the crack pressure. If the pressure in the 
cracks is atmospheric, the volume of fluid released would be the same as that discussed under the 
inadvertent intrusion scenario (2,000 gallons). However, the actual volume released could be 
much less than this value if the cracks are at the local hydrostatic or lithostatic pressure. For 
conservative results, the volume of released fluid is assumed to be 2,000 gallons. 

Depending on the pressure in the cracks, they could self-heal after the release because of 
additional salt creep. With repressurization of the cavern, the cracks could once again open, 
producing a series of short contaminant pulses (probably on the order of hours to days in 
duration) that would not interact with one another because of the time needed to repressurize the 
cavern to a value that approaches or exceeds the local lithostatic value. Because of gradients in 
the lithostatic pressure, cracks would open in a vertically upward direction (SMRI1997). With 
time, the contaminated fluid in the cracks could reach a deep underground aquifer and be 
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transported laterally to the location of a potential receptor (1,000 ft away from the point of 
release). 

The contaminant concentrations at the location of the receptor 1,000 years after the 
release into the underground aquifer would be the same as those presented above for failure of the 
cavern seal with a subsequent pulsed release at the depth of the cavern (Table 6.2). The resulting 
contaminant concentrations would all be much less than their associated MCLs 
(Section 4). 

6.2.4 Release of Contaminated Fluid through Leaky Interbeds or Nonhomogeneous Zones 

In this scenario, the cavern is assumed to have a leaky interbed or heterogeneity that 
allows communication with the outside environment. As the cavern pressure rises because of 
thermal effects and salt creep, fluid would be discharged into the interbed where it would be 
laterally transported under existing gradients. Fluid velocity in the interbed is assumed to be 
10 ft/yr. In this way, the entire fluid volume of the cavern would eventually be discharged into the 
surrounding material. 

Van Sambeek (1993) gives the following formula for the steady-state volumetric creep 
rate for a cylindrical cavern: 

& 

A_ = -J3(lH (P   -P.))nA f>-  _ir (2) 

V V       n 

where 
n, A, and Q/R = Model calibration parameters, 

P = Lithostatic pressure, 
P; = Internal pressure of the cavern, 
t = Time, and 

T = Temperature in degrees Kelvin. 

Parameters for the above equation are compiled in Berest et al. (1997b). For this analysis, 
the following values were selected as typical: n = 5, T=304K, Q/R=7,500, and A=100,000. For a 
brine-filled cavern, 

P   - Pi = 0 . tt    H (3) 

where H is the depth of the cavern (Berest et al. 1997b). 

Using a value of 533 m for H (top of cavern at a depth of 1,500 ft plus 250 ft of free 
brine), and the above parameters, the steady-state volumetric creep rate from Equation 2 
expressed as a percent would be about -0.007% per year. At this rate, it would take about 
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14,000 yr to discharge the cavern fluid to the interbed. For 2 million gallons of free brine in the 
cavern, the steady-state leak rate would, therefore, be about 150 gal/yr. 

The leaking brine would mix with in-situ water and be transported down-gradient. 
Because of this mixing, the contaminant concentrations would be reduced by dilution. Dilution, 
Df, can be expressed by the following expression (Tomasko 1991): 

Df=^-+1 (4) 
*~ or 

where Qcav is the volumetric leak rate of the cavern and Qgw is the volumetric flow in the interbed. 
For a cavern that has a diameter of 100 ft, an interbed thickness of 20 ft, and a groundwater 
velocity of 10 ft/yr, the dilution factor would be 1,000. 

Table 6-2 lists the contaminant concentrations at the receptor for this scenario at a time of 
1,000 years after the cavern has begun to leak. All of the concentrations are small compared to 
their MCLs. 

6.2.5 Partial Cavern Roof Fall 

Loss of cavern integrity through a partial roof fall coupled with failure of the cavern seal 
could produce impacts similar to those described in Section 6.2.2. Under these scenarios, the 
cavern would discharge fluid in a series of short pulses separated by periods of low to no 
discharge when the pressure in the cavern is increasing because of salt creep. If a partial roof fall 
occurs without failure of the cavern seal, the release of contaminated fluid would occur as a series 
of short pulses. A partial roof fall coupled with a release through leaky interbeds or non- 
homogeneous zones of higher permeability material would be manifested as a long slow release. 
Contaminant concentrations for these various scenarios are given in Table 6-2. 

6.2.6 Probabilities of Occurrence 

In performing a risk assessment, besides the concentrations of the contaminants of concern 
being required, the probability that a given scenario would occur also needs to be known. 
Because there is no operational history for disposing of NOW in salt caverns, the probabilities of 
occurrence for the release scenarios described above are uncertain. Under the most optimistic 
conditions, no releases would ever occur, and the associated probabilities of occurrence would be 
0.0. For the most pessimistic conditions, releases would always occur and the probabilities of 
occurrence would be 1.0. 

In order to reduce the uncertainty in the range of the probabilities of occurrence, a 
questionnaire was distributed to experts in the field of salt disposal. The panel of experts was 
asked to provide both a "best-estimate" and a "worst-case" estimate of the probability of 
occurrence for each of the release scenarios. In the context of this questionnaire and study, best 
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estimate did not refer to the "best-case" or the best or least risky case, but rather it referred to the 
probability of occurrence that was most likely in the best judgment of the expert. Similarly, 
"worst-case" referred to the least likely probability of occurrence in the best judgment of the 
expert rather than to the most risky case. 

Following the receipt of responses from the expert panel, the estimates were aggregated to 
form consensus values for each of the probabilities of occurrence. A number of procedures can 
be used to form the consensus values from the individual estimates. These include behavioral and 
mechanical approaches (Winkler and Sarin 1981). In behavioral aggregation, some contact is 
required between the experts. The range in estimates provided is then reduced through intensive 
group interaction. This methodology is typically followed in the Delphi approach of Brown and 
Helmer (Brown and Helmer 1964). With mechanical aggregation, a mechanical rule is used to 
combine the estimates of the probabilities. For example, the aggregate value can be the arithmetic 
mean, median, weighted average, or some other weighting that uses Bayesian estimation by 
incorporating a priori information (Winkler 1968; Winkler 1977; Makridakis and Winkler 1983). 
For the present study, an arithmetic average was used to represent the aggregate value for the 
probabilities of occurrence. This method was selected because of the difficulties and time 
constraints of using a Delphi approach, the lack of appropriate weighting functions for the experts 
(there is no cavern release data available that could be used to rank the ability of the experts 
according to past predictions [Winkler and Clemen 1992]), and the average value of the data 
performs as well as any of the other mechanical rules (Winkler 1968). 

Table 6-3 lists the best-estimate and worst-case aggregated probabilities of occurrence for 
the release scenarios previously discussed and their ranges. For all cases, the highest probabilities 
of occurrence were for a partial fall of the roof (0.10 and 0.29, respectively). The smallest 
probabilities of occurrence were for a partial roof fall with a cavern seal failure and release to a 
shallow aquifer (0.006 and 0.051, respectively), and a cavern seal failure with subsequent release 
to a shallow aquifer (0.012 and 0.040, respectively). 
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7. Toxicity of Contaminants of Potential Concern 

Toxicity assessment is a key component in risk assessment. It weighs available evidence 
regarding the potential for the contaminants of concern to cause adverse effects in exposed 
individuals. It consists of two parts: hazard identification and dose-response evaluation. The 
hazard identification process determines whether exposure to a contaminant can cause an increase 
in the incidence of a particular adverse health effect (e.g., cancer, birth defect) and whether that 
effect is likely to occur in humans. Section 7.1 describes the potential health hazards associated 
with the contaminants discussed in Section 4, that is, those contaminants to which humans could 
be exposed under various salt cavern release scenarios and exposure pathways. 

Toxicity assessment also provides an estimate of the relationship between the extent of 
exposure to a contaminant and the increased likelihood or severity of adverse effects. Dose- 
response evaluation is the process of evaluating, in a quantitative manner, the toxicity information 
and characterizing the relationship between the dose of the contaminant received and the 
incidence of adverse health effects in an exposed individual. Dose-response relationships provide 
toxicity values that are used to estimate the incidence or potential for adverse effects as a function 
of human exposure to the contaminant. Section 7.2 describes dose-response relationships for the 
contaminants of concern and provides toxicity values, where available, for each of those 
contaminants. These toxicity values are used in combination with contaminant intake information 
to estimate the potential for human health risks associated with salt cavern disposal of NOW. 

7.1 Hazard Identification 

Typically, two categories of toxicity are addressed in human health risk assessments: 
carcinogenic and noncarcinogenic. Carcinogens are believed to act via a "nonthreshold" 
mechanism of action; that is, a risk would be associated with any exposure level, no matter how 
small. Noncarcinogens are believed to act via a "threshold" mechanism of action; that is, there is 
some level of exposure (the threshold) below which the contaminant is unlikely to have an effect. 

The following paragraphs describe the hazards associated with the contaminants of 
concern identified in the previous sections (i.e., arsenic, benzene, cadmium, and chromium). As 
noted in Section 4, contaminants such as boron and lead would form insoluble precipitates and 
would not migrate to areas where they could come in contact with humans. The information 
presented comes from the Agency for Toxic Substances and Disease Registry (ATSDR) Fact 
Sheets. These fact sheets are available on the Internet and summarize information about various 
hazardous substances, including their health effects (ATSDR 1993). 

Arsenic. Arsenic is a metal usually found in compounds with oxygen, chlorine, sulfur, 
carbon, or hydrogen. Some arsenic compounds can dissolve in water. Arsenic can change from 
one form to another, but it does not break down. Exposure comes from ingesting contaminated 
water, soil, or air. Other exposure routes include breathing workplace air or burning smoke from 
wood containing arsenic. High levels (60 ppm [mg/L]) in food or water can be fatal; lower levels 
can cause nausea, decreased production of blood cells, and abnormal heart rhythms. Arsenic is a 
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known carcinogen; ingesting inorganic arsenic increases the risk of skin cancer and tumors of the 
bladder, kidney, liver, and lung. The EPA has set a limit of 0.05 ppm for arsenic in drinking water 
(EPA 1994a). 

Benzene. Benzene is a colorless liquid with a sweet odor that is found in crude oil and 
gasoline. In liquid form, benzene mixes easily in water. In water, benzene can change quickly 
into a vapor and mix readily with the air. In air, it reacts with other chemicals and breaks down 
within a few days. It can move from soil to groundwater. Plants and animals do not store high 
levels of benzene. The most common exposure route is inhalation, but benzene can also be 
ingested. Most exposure comes from tobacco smoke, auto exhaust, and industrial emissions. 
Benzene is a known human carcinogen and is associated with leukemia. EPA has set a maximum 
permissible level of benzene in drinking water of five parts per billion (ppb) (5 x 10"9) per day for 
a lifetime of exposure. The EPA has set a goal of 0 ppb for drinking water and rivers and lakes. 
The maximum permissible level of benzene in water for children for short-term exposures (10 
days) is 235 ppb. 

Cadmium. Cadmium is found naturally in the earth's crust. It is usually combined with 
other elements (e.g., oxygen, chlorine, sulfur), and it has no definite taste or odor. Cadmium 
binds strongly to soil particles, and some cadmium dissolves in water. It can change form in the 
environment but does not break down. Cadmium can accumulate in the human body from many 
years of low-level exposure. Exposure comes from eating foods that contain cadmium and 
drinking contaminated water. Other sources include breathing contaminated workplace air, 
cigarette smoke, or air near the burning of fossil fuels or municipal waste. On the basis of weak 
evidence of lung cancer in humans from breathing cadmium and strong evidence from animal 
studies, cadmium and cadmium compounds may be reasonably anticipated to cause cancer in 
humans. It is not known whether cadmium causes cancer from eating or drinking contaminated 
food or water. The EPA has set a limit of 5 ppb for cadmium in drinking water. 

Chromium. Chromium occurs naturally in rocks, soils, plants, and animals. It has three 
main forms. These are chromium 0, which does not occur naturally; chromium III, the 
compounds of which are stable and occur naturally; and chromium VI, which rarely occurs. 
Chromium III is an essential nutrient in the human diet, but only small amounts are needed. 
Chromium adheres strongly to soil particles, but small amounts of chromium move from soil to 
groundwater. In surface water, most chromium sticks to dirt particles that settle to the bottom; 
only a small amount dissolves. Human exposure comes from ingestion or inhalation, especially 
breathing contaminated workplace air or sawdust from chromium-treated wood. At high levels, 
all forms of chromium can be toxic, but chromium VI is more toxic than chromium III. Long- 
term exposure to high or moderate levels of chromium VI can damage the nose and lungs. 
Ingesting large amounts of chromium can cause stomach upsets and ulcers, convulsions, kidney 
and liver damage, and death. Certain chromium VI compounds are known carcinogens. ATSDR 
has insufficient data to determine if chromium 0 or chromium III are carcinogens. The EPA has 
set an MCL for total chromium of 0.1 mg/L. 
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7.2  Dose-Response Relationships for Contaminants of Concern 

Toxicity values are used to translate a dose of a contaminant (the intake) into a risk for 
cancer or a hazard index for noncancer effects. There are of two types of toxicity values: slope 
factors and reference doses. Section 7.2.1 describes slope factors for the contaminants of 
concern; Section 7.2.2 describes reference doses for the contaminants of concern. 

7.2.1 Slope Factors 

Slope factors are used to estimate the toxicities of carcinogens. A slope factor is defined 
as a plausible upper-bound estimate of the probability of a response per unit intake of a chemical 
over a lifetime. It is used to estimate an upper-bound probability of an individual developing 
cancer as a result of a lifetime of exposure to a particular level of a potential carcinogen. A curve 
representing the response per unit intake for a given chemical is known as a dose-response curve. 
This curve is developed by evaluating toxicity information and characterizing the relationship 
between the dose of a contaminant received and the incidence of adverse health effects. 

Dose-response curves and slope factors are developed for various exposure routes (e.g., 
oral, inhalation). Because the potential exposure pathways identified for salt cavern release 
modes is always ingestion of groundwater, the oral slope factor is used. The slope factor is the 
upper 95% confidence limit of the slope of the dose-response curve. Because it represents the 
upper 95% confidence limit of the slope of the curve and because the slope is determined using 
very conservative models, the slope factor itself is conservative.   As a result, the risks calculated 
using slope factors tend to be upper-bound estimates of the "true" risks. The oral slope factors 
for the contaminants of concern come from EPA's Integrated Risk Information System (IRIS) 
and are shown in Table 7-1. 

7.2.2 Reference Doses 

Reference doses (RfD) are used to estimate the toxicities of noncarcinogens. An RfD is 
an estimate of the "safe dose" of a contaminant for humans. A variety of RfDs are available, 
depending on the exposure route (e.g., oral, inhalation), the critical effect (e.g., developmental) 
and the length of exposure being evaluated (e.g., chronic [long time] event, or acute [a single, 
short-time event]). Because the only potential exposure pathway to humans for salt caverns is 
ingestion of groundwater, only the oral RfDs are used in calculating noncarcinogenic hazards. 
RfDs are conservative because EPA applies order-of-magnitude safety factors to allow for 
uncertainty. As a result, the hazards estimated using RfDs tend to be upper-bound estimates of 
the "true" hazards. RfDs for the contaminants of concern come from IRIS and are listed in 
Table 7-2. 

Often the data needed to develop toxicity values are weak or unavailable; typically, data 
from animal studies are extrapolated to human studies. Also, a number of uncertainties are 
associated with the models used to derive toxicity values, and safety factors are incorporated into 
the derivation of toxicity factors.   Because EPA continually reviews and revises its toxicity 
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values, they may change over time. Toxicity values provide the major source of uncertainty in 
risk assessments. 
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8. Risk Characterization 

Human health risks from contaminants at waste disposal caverns may be carcinogenic or 
noncarcinogenic. This section describes these two types of risks and uses the information derived 
from Section 6 on exposure pathways and exposure-point concentrations and the toxicity values 
described in Section 7 to develop risk estimates for the contaminants of concern. Section 8.1 
reviews the information developed in Section 6 to produce exposure-point concentrations for the 
release scenarios. Section 8.2 describes potential cancer risks from those scenarios, and Section 
8.3 describes their potential noncancer risks. 

8.1 Exposure Scenarios 

Section 6 described the potential release modes. These were (1) failure of the cavern seal, 
resulting in contaminated fluid entering the groundwater at the depth of the cavern or at more 
shallow depths; (2) release of contaminated fluid through a crack in the salt; (3) release of 
contaminated fluid through a leaky interbed or higher permeability nonhomogeneous zone; and 
(4) a partial cavern roof fall, resulting in the release of contaminated fluids to deep or shallow 
groundwater. For all of the release modes, the exposure pathway would be ingestion of 
contaminated groundwater by residents living near the salt caverns. Table 8.1 summarizes the 
potential release modes. 

The concentrations of the contaminants reaching the water that humans may drink depend 
on the location of the release, i.e., release to a shallow aquifer or release to a deep aquifer (see 
Table 6-2). Exposure-point concentrations are the concentrations of the contaminants in 
groundwater (shallow or deep) at the point of contact with a human receptor.   Estimated 
exposure-point concentrations derived in Section 6 for the contaminants of concern are 
summarized in Tables 8-2 through 8-7. Note that in estimating the exposure-point 
concentrations, assumptions were made about the probability that the release event would actually 
occur. Thus, the concentrations in Section 6 were calculated assuming that the release would 
occur. These concentrations need to be adjusted for the likelihood of actual occurrence. Tables 
8-2 through 8-7 show the exposure-point concentrations assuming release occurs, the probability 
that the release would occur based on the discussion in Section 6.2.6, and the resulting exposure- 
point concentrations used for estimating risk. Note that the exposure-point concentrations for 
benzene would be zero for all scenarios because of biodegradation along the flow path. 

To estimate the amount of contaminant actually received from drinking contaminated 
water, assumptions must be made regarding time, frequency, and duration of exposure to that 
water. These assumptions are presented in Table 8-7. Unless otherwise indicated, standard EPA 
default exposure factors are used in the assumptions (EPA 1991). 

Using these assumptions and the exposure-point concentrations, an intake rate for each 
contaminant of concern can be calculated with the following equation: 
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C.xE xBP xE xB x(B 
-Z\ = —  (5) 1 W xS! 

where 
I, = Intake of contaminant / 
C, = Exposure point concentration of contaminant /, in g/L 

IR = Intake rate in L/day 
ET = Exposure time, in h/d 
EF = Exposure frequency in d/yr 
ED = Exposure duration, in yr 
CF = Conversion factor of 1 d/24 h 

BW = Body weight of the receptor, in kg, and 
AT = Averaging time, in d (for carcinogens, AT = 25,550 d (70 years); for 

noncarcinogens, AT = 365 d/y x ED) 

Tables 8-9 through 8-14 show the intake rates in milligrams per kilogram-day for each 
contaminant of concern for the release scenarios for best-estimate and worst-case conditions. 

8.2 Cancer Risks 

Cancer risk is the likelihood of getting cancer. It is expressed as a probability (e.g., 1 in 
100,000, which equals 10"5).   A 10"5 risk is a one-in-one hundred thousand excess risk of cancer 
from a given level of exposure to a particular contaminant. In other words, each individual 
exposed to that contaminant at that level over his/her lifetime has a one-in-one-hundred-thousand 
chance of getting cancer from that particular exposure. Cancer risk is described as excess because 
it is above the existing background risk of cancer. (In a population of one million people, the 
number of background cancer cases is roughly between 250,000 and 333,000.) An alternative 
interpretation is that one additional case of cancer would be expected to 
occur in a population of one million people who are all exposed under the same circumstances to 
a particular contaminant. 

Cancer risks were calculated for each contaminant and for each exposure route for that 
contaminant and were then summed over all contaminants and exposure routes. Because the only 
exposure pathway for potential contaminant releases from a disposal cavern would be 
groundwater, the only exposure route is ingestion. 

Human cancer risks associated with disposal of nonhazardous oil-field wastes in salt 
caverns are estimated for the release scenarios using the following equation: 

R. = I.xff  . 
i      j. i (6) 
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where 
R; = Risk from contaminant I, 

I; = Intake of contaminant I, and 
Sfj = Slope factor for contaminant I. 

Using Equation 6 and the data in Tables 8-9 through 8-14 (intake estimates) and 
Table 7-1 (oral slope factors), cancer risks were estimated for each of the individual contaminants 
for the release scenarios for best-estimate and worst-case conditions. The results are presented in 
Tables 8-15 and 8-16. The total cancer risk for the release scenarios is the sum of the individual 
cancer risks for all contaminants of concern. Because there are no slope factors available for 
cadmium and chromium, and the exposure-point concentration of benzene would be 0.0 for all of 
the release scenarios, the total cancer risk is thus equal to the risk estimate for arsenic. 

For worst-case conditions, the total cancer risks range from 2.0 x 10"17 for failure of the 
cavern seal with a fluid release at the depth of the cavern and for cracks releasing fluid at the 
depth of the cavern to 1.1 x 10"8 for a release scenario in which there is a partial roof fall and 
cavern seal failure with a failed casing at a shallow depth that releases contaminated fluid to the 
shallow aquifer (Table 8-16). Even under worst-case conditions, the excess cancer risks would lie 
well below the acceptable target risk range (1 x 10"4 to 1 x 10"6) of the EPA that was established 
for remedial action goals for National Priority List (NPL) sites (40 CFR300.430(e)(2)(I)(A)(2)). 
For best-estimate conditions, the estimated cancer risks would be less (Table 8-15). For best- 
estimate conditions, the estimated cancer risks would be less. 

8.3 Noncancer Risks 

Risks associated with noncarcinogens are expressed as hazard quotients, which is the 
intake of a particular contaminant divided by its RfD. Because the RfD is the estimated "safe" 
dose for humans, when a hazard quotient exceeds 1, there is a potential for adverse 
noncarcinogenic effects. Hazard quotients are not probabilities. A hazard quotient that is less 
than one indicates a very low potential for noncarcinogenic effects. A hazard quotient that is 
greater than one indicates that the information on the exposure should be reviewed to determine 
the significance of the finding. Like carcinogenic risks, hazard quotients are summed over 
contaminants and exposure routes. However, for salt caverns, the only exposure route would be 
the oral pathway (ingestion of groundwater). Also, hazard quotients for multiple contaminants 
may not be strictly additive because different chemicals may affect different organs. 

For a single contaminant, /, the hazard quotient is calculated according to the equation, 

*i = -5T- (7) 
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where 
Hqj = Hazard quotient from contaminant I, 
I;     = Intake of contaminant I, and 

RfD; = Reference dose for contaminant I. 

Using Equation 7 and the data in Tables 8-9 through 8-14 (intake estimates) and Table 7-2 
(oral RfDs), noncancer risks are estimated for each of the individual contaminants for the release 
scenarios for both best-estimate and worst-case conditions. The results are shown in Tables 8-17 
and 8-18. All of the contaminants of concern would have hazard quotients that are much less 
than one. Even when the hazard quotients are summed for all contaminants in a given release 
scenario, the greatest hazard index (sum of the individual hazard quotients) under worst-case 
conditions would be 6 x 10"5, which is much less than one (Table 8-18). For best-estimate 
conditions, the largest total hazard index would be less (1.4 x 10"5) (Table 8-17). 
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9. Sensitivity of Risks to Operating Procedures and Regulatory Structures 

The risk estimates calculated in Section 8 indicate that the potential for human health risks 
associated with disposal of nonhazardous oil field wastes in salt caverns is very low. These risks 
were estimated assuming normal operating conditions and standard operating procedures for 
cavern closure. Any relaxation in design, monitoring, or operating practices could increase these 
risks. 

At the same time, because the projected risks from failure of the cavern seal or cavern 
walls are low, the results of this preliminary assessment would not appear to support the 
imposition of additional safety regulations (i.e., regulations beyond those assumed to be used 
under normal operational and post-operational conditions). For example, the health risks 
estimated for release of contaminants into a deep or shallow aquifer assume that the residents who 
drink the water would be at a lateral distance of 1,000 ft from the edge of the disposal cavern. 
Risks would be lower if the population drinking the water were further away. Therefore, based 
on the estimates of cancer and noncancer risks presented in Section 8, it would not be necessary 
to implement any new requirements for residents living in the vicinity of waste caverns. 

Although the risks associated with spills, accidents, and equipment leaks during normal 
operations were not evaluated in this study, it is likely that contaminants released from such 
occurrences would present greater risks than those derived from the cavern itself. Consequently, 
care should be taken to ensure that operating practices continue to be monitored in a way that 
minimizes the occurrence of surface accidents. 

38 



10. Summary 

This report investigated the potential for human health risks associated with the use of salt 
caverns for nonhazardous oil-field waste disposal. Based on assumptions that were developed for 
a generic cavern and generic oil-field wastes, the estimated human health risks for worst-case 
conditions are very low (excess cancer risks of between 1.1 x 10"8 and 2.0 x 10"17) and hazard 
indices (referring to noncancer health effects) of between 6 x 10"5 and 1.0 x 10"7. Normally, risk 
managers consider risks of 1 x 10"6 and less and hazard indices of less than 1 to be acceptable. 
For best-estimate conditions, the excess cancer risks and hazard indices would be less. 

Because these risks were developed for a hypothetical cavern, and site-specific conditions 
related to cavern type, location, and characteristics of the waste being disposed will vary, it would 
be prudent to conduct a site-specific risk assessment for an actual cavern, perhaps for an existing 
cavern currently in use for waste disposal. Such an assessment would provide a more realistic and 
useful assessment than the generic one described in this report. 

A few comments on the use of the results of this report are in order. First, the assessment 
does not address risks to workers at the cavern disposal site. Such risks would be comparable to 
or less than worker risks associated with hydrocarbon cavern storage operations. (Because of the 
potential for explosions at hydrocarbon storage operations, worker risks for nonhazardous oil- 
field waste disposal may be less than for hydrocarbon storage.) Second, the assessment does not 
determine whether any health effects will occur in the future; it only estimates cancer risk and 
potential for noncarcinogenic effects. Third, risks have only been estimated for contaminants for 
which toxicity values were available; just because there is no toxicity value does not mean there is 
no risk. Finally, the assessment is limited to human health effects produced by nonradioactive 
contamination; it does not address the possible ecological risks associated with salt cavern 
disposal, nor does it estimate risks associated with NORM that may be included in oil field 
wastes. 
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Tables 

(Note: Numbers presented in these tables have been rounded) 

Table 6-1 Chemical Constituent Concentrations Assumed for Cavern Brine at the Time of 
Release 

Type of 
Waste/Reference 

Concentration Range (mj */L unless otherwise noted) 

Benzene Arsenic Cadmium Chromium 

Produced water 

SAIC (1994) 0.08-14 BDLa -0.032 BDL-0.098 BDL-0.85 

EPA (1993)b 0.052-20.4 0.017-0.31 0.0012-0.098 — 

EPA (1987)b 0.47-2.9 0.02-1.7 — — 

Drilling Waste 

EPA (1987)b 

TCLP datac 

__d BDL-0.002 0.011-0.29 BDL-0.78 

EPA (1987)a 

analysis of waste 
itself 

__d BDL-0.01 mg/kg 2-5.4 mg/kg 22-190 mg/kg 

Tank Bottoms 

EPA (1994b) 
TCLP data 

BDL-13 BDL-0.06 BDL- 0.008 BDL-0.14 

EPA (1994b) 
analysis of waste 

itself 

0.175-2,686 
mg/kg 

0.47-166 mg/kg 0.32-6,500 
mg/kg 

1.7-1,170 mg/kg 

Selected 20.4 1.7 0.29 0.85 
Concentrations6 

a   BDL = value is below detection limit. 
b   Range is from the median to the upper 90th percentile. 
c   TCLP = toxicity characteristic leaching procedure. 
d   No data reported in this reference. 
e   Highest value for each constituent in TCLP samples for produced water, drilling waste, and 

tank bottoms. 
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Table 6-2 Summary Table of Release Calculations 

Release 
Scenario Contaminant Retardation 

Initial 
Cone. 
(mg/L) 

Concentration 
at 1,000 yrs 

(mg/L)a 

Concentration 
at 1,000 yrs 

(mg/L)b 
MCL 

(mg/L) 

Cavern 
seal fails 
and 
releases 
fluid at 
depth 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 4.1 x 10"8 0.005 

Arsenic 200 1.7 9.5 x 1015 0.05 

Chromium 500 0.85 7.7 x 1015 0.1 

Cavern 
seal fails 
and 
releases 
fluid to 
shallow 
aquifer 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 1.0 x 10"6c 0.005 

Arsenic 200 1.7 1.2 x 10"5 0.05 

Chromium 500 0.85 1.2 x 10"8 0.1 
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Table 6.2 Summary Table of Failure Calculations (continued) 

Release 
Scenario Contaminant Retardation 

Initial 
Cone. 
(mg/L) 

Concentration 
at 1,000 yrs 

(mg/L)a 

Concentration 
at 1,000 yrs 

(mg/L)b 
MCL 

(mg/L) 

Release 
from 
crack 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 4.1 x 10"8 0.005 

Arsenic 200 1.7 9.5 x 1045 0.05 

Chromium 500 0.85 7.7 x 1015 0.1 

Release 
from 
leaky 
interbed 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 1.6 xlO"8 0.005 

Arsenic 200 1.7 6.1 x 1013 0.05 

Chromium 500 0.85 5.2 x 1013 0.1 

Roof fall 
+ release 
at depth 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 4.1 x 10"8 0.005 

Arsenic 200 1.7 9.5 x 1015 0.05 

Chromium 500 0.85 7.7 x 1015 0.1 
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Table 6.2 Summary Table of Failure Calculations (continued) 

Release 
Scenario Contaminant Retardation 

Initial 
Cone. 
(mg/L) 

Concentration 
at 1,000 yrs 
(mg/L)a 

Concentration 
at 1,000 yrs 
(mg/L)b 

MCL 
(mg/L) 

Roof fall 
+ cavern 
seal 
failure + 
release at 
depth 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 4.1 x 10"8 0.005 

Arsenic 200 1.7 9.5xl015 0.05 

Chromium 500 0.85 7.7 x 1015 0.1 

Roof fall 
+ cavern 
seal 
failure + 
release at 
shallow 
depth 

Benzene 10 20.4 0.0 0.005 

Cadmium 50 0.29 1.0xl0"6c 0.005 

Arsenic 200 1.7 1.2 xlO"5 0.05 

Chromium 500 0.85 1.2 xlO"8 0.1 

Roof fall 
+ release 
through 
leaky 
interbed 

Benzene 10 20.4 0.0 

Cadmium 50 0.29 1.6 x 108 0.005 

Arsenic 200 1.7 6.1 x 1013 0.05 

Chromium 500 0.85 5.2 x 1013 0.1 

a Short, pulsed release. 
b Long, slow release. 
c Maximum concentration of 1.3 x 10"5 occurs at 334 yrs. 
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Table 6-3 Probabilities of Occurrence for Specified Release Scenarios 

Release Scenario No. of 
Responses 

Best Estimate Range Worst 
Case 

Range 

Seal fails and 
releases fluid at 
depth 

5 0.031 0.0005 
to 
0.1 

0.12 0.002 
to 
0.25 

Seal fails and 
releases fluid at 
shallow depth 

5 0.012 0.0001 
to 0.05 

0.040 0.001 
to 0.10 

Cracks release 
fluid at depth 

5 0.022 0.0001 
to 0.10 

0.120 0.001 
to 0.35 

Leaky interbeds 
release fluid at 
depth 

5 0.022 0.0001 
to 0.10 

0.120 0.001 
to 0.35 

Roof fall plus 
fluid released at 
depth 

5 0.100 10"6 to 
0.50 

0.290 10"5 to 
1.0 

Roof fall plus 
cavern seal fails 
and releases fluid 
at depth 

5 0.062 5xl0'6 

to 0.2 
0.163 2x10s 

to 0.35 

Roof fall plus 
cavern seal fails 
and releases fluid 
at shallow depth 

5 0.006 lxlO"7 

to 0.02 
0.051 lxlO6 

to 0.10 

Roof fall plus 
release through 
leaky interbed 

5 0.062 5xl0"6 

to 0.20 
0.163 2xl05 

to 0.35 
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Table 7-1 Oral Slope Factors for Contaminants of Concern 

Contaminant of Concern Oral Slope Factor 
(1/ (mg/kg-day)) 

Arsenic 1.5 

Benzene 0.029 

Cadmium NA 

Chromium NA 

NA = Not available 

Table 7-2 Oral Reference Doses for Contaminants of Concern 

Contaminant of Concern Oral RfD (mg/kg/day) 

Arsenic 0.0003 

Benzene NA 

Cadmium 0.0005 

Chromium (III) 1.0 

Chromium (VI) 0.005 

NA = Not available 
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Table 8-1 Scenarios for Risk Calculations 

Release 
Location Release Modes 

Release to 
shallow aquifer 

- Cavern seal failure with casing failure at shallow depth 
- Cavern roof fall with cavern seal failure and 

casing failure at shallow depth 

Release to deep 
aquifer 

- Cavern seal failure with casing failure at depth of cavern 
- Cracks 
- Leaky interbeds 
- Roof fall with intact cavern seal 
- Roof fall with cavern seal failure and casing failure at depth of cavern 
- Roof fall with release through exposed leaky interbed 
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Table 8-4  Exposure-Point Concentrations for Shallow, Best-Estimate Aquifer Release Scenarios 

Contaminant Cone, at 
1,000 yr 
(mg/L) 

Best-Estimate Probability of 
Occurrence 

Best-Estimate Exposure- 
Point Concentrations (mg/L) 

Seal fails, 
casing fails, 
and fluid 
released to 
shallow 
aquifer 

Roof fall+ 
seal fails, + 
casing fails 
and releases 
fluid to 
shallow 
aquifer 

Seal fails, 
casing fails, 
and fluid 
released to 
shallow 
aquifer 

Roof fall + 
seal fails + 
casing fails 
and releases 
fluid to 
shallow 
aquifer 

Benzene 0.0 0.012 0.006 0.0 0.0 

Cadmium 1.0 x 10* 0.012 0.006 1.2xl0"8a 6.0 x 10"9 

Arsenic 1.2 x 10"5 0.012 0.006 1.4 xlO"7 7.2 x 10"8 

Chromium 1.2 xlO"8 0.012 0.006 1.4 xlO10 7.2 x 1011 

a Maximum concentration of 1.6xl0"7 mg/L occurs at 334 years. 
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Table 8-5  Exposure-Point Concentrations for Shallow, Worst-Case Aquifer Release Scenarios 

Contaminant Cone, at Worst-Case Probability of Worst-Case Exposure-Point 
1,000 yr Occurrence Concentrations (mg/L) 
(mg/L) 

Seal fails, Roof fall + Seal fails, Roof fall + 
casing fails, seal fails + casing fails, seal fails + 
and fluid casing fails and fluid casing fails 
released to and releases released to and releases 
shallow fluid to shallow fluid to 
aquifer shallow 

aquifer 
aquifer shallow 

aquifer 

Benzene 0.0 0.040 0.051 0.0 0.0 

Cadmium 1.0 xlO"6 0.040 0.051 4.0 x 10"8a 5.1 x 10"8 

Arsenic 1.2 xlO"5 0.040 0.051 4.8 x 10"7 6.1 x 10"7 

Chromium 1.2 xlO"8 0.040 0.051 4.8 x 10'10 6.1 x 1010 

1 Maximum concentration of 5.2xl0"7 mg/L occurs at 334 years. 
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Table 8-6  Exposure-Point Concentrations for Additional Best-Estimate Releases at Depth 

Contaminant Cone, at 
1,000 yr 
(mg/L) 

Best-Estimate Probability of 
Occurrence 

Best-Estimate Exposure- 
Point Concentrations (mg/L) 

Leaky 
interbed 
releases fluid 
at depth 

Roof fall + 
long slow 
release 
through leaky 
interbed at 
depth 

Leaky 
interbed 
releases fluid 
at depth 

Roof fall + 
release 
through leaky 
interbed at 
depth 

Benzene 0.0 0.022 0.062 0.0 0.0 

Cadmium 1.6 xlO'8 0.022 0.062 3.5 x 10"10 9.9 x 1010 

Arsenic 6.1 x 1013 0.022 0.062 1.3 x 10'14 3.8 x 1014 

Chromium 5.2 x 1013 0.022 0.062 1.1 x 1014 3.2 x 10'14 
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Table 8-7   Exposure-Point Concentrations for Additional Worst-Case Releases at Depth 

Contaminant Cone, at 
1,000 yr 
(mg/L) 

Worst-Case Probability of 
Occurrence 

Worst-Case Exposure-Point 
Concentrations (mg/L) 

Leaky 
interbed 
releases fluid 
at depth 

Roof fall + 
long slow 
release 
through leaky 
interbed at 
depth 

Leaky 
interbed 
releases fluid 
at depth 

Roof fall + 
release 
through leaky 
interbed at 
depth 

Benzene 0.0 0.120 0.163 0.0 0.0 

Cadmium 1.6 x 10"8 0.120 0.163 1.9 xlO'9 2.6 x 10"9 

Arsenic 6.1 x 1013 0.120 0.163 7.3 x 1014 9.9 x 1014 

Chromium 5.2 x 10'13 0.120 0.163 6.2 x 1044 8.5 x 10'14 
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Table 8-8 Exposure Scenario Assumptions for Ingestion of Groundwater 

Parameter Value 

Daily intake rate 2L/d 

Exposure time 24h/d 

Exposure frequencya 350 d/yr 

Exposure duration" 30 yr 

Body weight of human receptor 70 kg 

Averaging time 
Carcinogens (70 yr) 
Noncarcinogens (365 d/yr x ED)b 

25,550 d 
10,950 d 

a   Exposure frequency and exposure duration based on specifics of failure mode. 
b   ED = exposure duration. 
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Table 8-11 Estimated Intake Rates for Shallow, Best-Estimate Aquifer Release Scenarios 

Intake Rate (mg/kg-day) 

Seal fails, casing fails, and fluid 
released to shallow aquifer 

Roof fall + seal fails + casing fails 
and releases fluid to shallow aquifer 

Contaminant Carcinogen Noncarcinogen Carcinogen Noncarcinogen 

Benzene 0.0 0.0 0.0 0.0 

Cadmium 1.4xl0'10a 3.2 x lO40" 7.2 x 10"11 1.6 x 1010 

Arsenic 1.7 xlO'9 3.8 x 10"9 8.6 x 1010 1.9 xlO'9 

Chromium 1.7 x 1012 3.8 x 1012 8.6 x 1013 1.9 x 1012 

a Maximum concentration of 1.9xl0"9 mg/kg-day occurs at 334 years. 
b Maximum concentration of 4.2xl0"9 mg/kg-day occurs at 334 years. 

Table 8-12 Estimated Intake Rates for Shallow, Worst-Case Aquifer Release Scenarios 

Intake Rate (mg/kg-day) 

Seal fails, casing fails, and fluid 
released to shallow aquifer 

Roof fall + seal fails + casing fails 
and releases fluid to shallow aquifer 

Contaminant Carcinogen Noncarcinogen Carcinogen Noncarcinogen 

Benzene 0.0 0.0 0.0 0.0 

Cadmium 4.8 x 10"10a 1.1 x 10% 6.1 x 1010 1.4 xlO"9 

Arsenic 5.8 x 10"9 1.3 x 10"8 7.3 x 10"9 1.7 xlO"8 

Chromium 5.8 x 1012 1.3 xlO11 7.3 x 1012 1.7 xlO11 

a Maximum concentration of 6.2xl0"9 mg/kg-day occurs at 334 years. 
b Maximum concentration of 1.4xl0"8 mg/kg-day occurs at 334 years. 
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Table 8-13   Estimated Intake Rates for Additional, Best-Estimate Aquifer Release Scenarios 

Intake Rate (mg/kg-day) 

Leaky interbed releases fluid at 
depth 

Roof fall + release thorough leaky 
interbed at depth 

Contaminant Carcinogen Noncarcinogen Carcinogen Noncarcinogen 

Benzene 0.0 0.0 0.0 0.0 

Cadmium 4.2 x 10'12 9.5 x 1012 1.2 xlO11 2.7 x 10"11 

Arsenic 1.6 xlO16 3.5 x 1016 4.6 x 1016 1.0 xlO15 

Chromium 1.3 x 1016 3.0 x 1016 3.8 x 10'16 8.6 x 1016 

Table 8-14  Estimated Intake Rates for Additional, Worst-Case Aquifer Release Scenarios 

Intake Rate (mg/kg-day) 

Leaky interbed releases fluid at 
depth 

Roof fall + release through leaky 
interbed at depth 

Contaminant Carcinogen Noncarcinogen Carcinogen Noncarcinogen 

Benzene 0.0 0.0 0.0 0.0 

Cadmium 2.3 x 10"11 5.1 x 1011 3.1 x 10-" 7.0 x 10"" 

Arsenic 8.8 x 1016 2.0 x 1015 1.2 xlO15 2.7 x 10"15 

Chromium 7.4 x 1016 1.7 x 1015 1.0 x 1015 2.3 x 1015 
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Radiological Dose Assessment of NORM Disposal 
it 

in Class II Injection Wells 
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ABSTRACT 

Subsurface disposal of petroleum industry wastes containing naturally occurring 
radioactive material (NORM) via injection into Class II wells was modeled to estimate 
potential radiological doses to individuals consuming water from a shallow aquifer. A 
generic model was developed for the injection of 100,000 barrels of NORM waste 
containing 2,000 picocuries per liter of radium into a layered geologic system. In separate 
modeling runs, it was assumed that a casing failure released the entire volume of NORM 
into each successive geologic layer, including the shallow aquifer. Radionuclide 
concentrations and related potential doses were calculated for receptors located in the 
shallow aquifer from 0 to 20 miles downgradient of the injection well. The results 
indicated that even under conservative assumptions, calculated radionuclide concentrations 
and potential doses associated with subsurface disposal of NORM in Class II wells were 
below levels of regulatory concern. The preliminary results from a dose assessment of a 
specific project entailing injection of NORM into Class II wells support the conclusions of 
the generic study. 

INTRODUCTION 

In the past few years, the petroleum industry has adopted methods for managing 
and disposing of waste streams containing naturally occurring radioactive material 
(NORM) that are more restrictive than past practices and are likely to provide greater 
isolation of radioactivity. Simultaneously, many states have promulgated regulations 
imposing stricter standards on the management of NORM wastes. The result of these 
actions has been increased costs of waste management for the petroleum industry. 

Funding for this work was provided by the U.S. Department of Energy, Office of Policy and 
Office of Fossil Energy, under contract W-31-109-Eng-38. 



The U.S. Department of Energy (DOE) has funded a number of studies to assess 
the potential risks associated with various NORM disposal options, including the disposal 
of NORM by injection into existing, permitted Class II wells. The results of these studies 
indicate that this form of disposal presents a negligible risk to the general public. In the 
first such study (1), potential doses resulting from underground injection of NORM were 
modeled by assuming a generic geologic setting. A subsequent study (2) modeled the 
potential doses resulting from injection of NORM into several, specific Class II injection 
wells that will be used for NORM disposal in a technology demonstration project. The 
results of these studies are presented in this paper. Greater detail regarding the 
methodologies, assumptions, and input parameters is contained in the referenced reports. 

GENERIC STUDY 

In the generic study of NORM disposal in a Class II well (1), underground 
injection was modeled by assuming a geologic setting of interlayered sandstone and shale 
deposits, the shallowest unit being a sandstone drinking water aquifer. A conservative set 
of assumptions was used. Separate model runs were made assuming that during injection, 
a casing failure caused the entire volume of NORM-contaminated waste to be injected into 
each geologic layer, in turn, including the drinking water aquifer. Radionuclide 
concentrations were calculated at a number of receptor locations in the drinking water 
aquifer, ranging from 0 to 20 miles (mi) downgradient from the injection site. 
SWIFT II (3), a three-dimensional model, was used to model the casing failures and 
subsequent transport of radionuclides to the downgradient receptor locations. Annual 
doses resulting from the radionuclide concentrations were calculated using exposure 
parameters recommended by the U.S. Environmental Protection Agency for maximum 
residential exposures (4). 

Assumptions and Input Parameters 

The stratigraphy modeled in the generic study consisted of six interlayered 
sandstone and shale units. The upper unit was assumed to be a 1,800-feet (ft) thick 
sandstone layer that served as a drinking water aquifer at the receptor locations. This unit 
was underlain by alternating shale and sandstone units, each 1,600 ft thick. The porosities 
of the sandstone and shale units were assumed to be 0.2 and 0.1, respectively. The units 
were tilted, with a slope of 0.01. The regional groundwater gradient also was assumed to 

Class II injection wells are a specific category of injection wells used by the oil and gas 
industry to dispose of saltwater produced in conjunction with oil or gas, to inject fluids to 
enhance oil recovery, or to store hydrocarbon liquids. Class II permitting requirements are 
established by the Underground Injection Control Program, Part C of the Safe Drinking Water 
Act of 1974. 



be 0.01.   This gradient is large but yields conservative estimates for travel times and 
concentrations in the model. 

To calculate the source term for the generic study, it was assumed that 
100,000 barrels (bbl) of a slurry containing NORM wastes with a radium concentration of 
2,000 picocuries per liter (pCi/L) were injected over a period of four days. The exposure 
pathway assumed that casing failure during injection released the entire volume of NORM 
wastes into the subsurface units. Upon release, all of the radium dissolved 
instantaneously. The dissolved radium was transported in the subsurface to a drinking 
water well, and ingestion of contaminated groundwater resulted in exposure. To calculate 
potential doses, it was assumed that an individual consumed 2 liters of water per day for 
350 days per year. 

Casing failures were simulated at three different depths within the top sandstone 
aquifer: one at a shallow depth (300 ft), one at the midpoint (900 ft), and one near the 
bottom (1,500 ft). Failures also were simulated at the midpoint of each of the underlying 
units at depths of 2,600 ft (shale), 4,200 ft (sandstone), 5,800 ft (shale), 9,000 ft 
(sandstone), and 10,600 ft (shale). Receptor points were located at a depth of 300 ft 
within the sandstone aquifer at distances ranging from 0 mi (i.e., coincident with the 
injection well) to 20 mi downgradient. 

The model was run first to calculate the radium-226 and radon-222 concentrations 
at each of the receptor points. Additional calculations were made by assuming two 
domestic wells were pumping simultaneously at a rate of 14,400 gallons per day (gal/day), 
0.2 and 0.5 mi from the injection site, respectively. This rate was chosen as a reasonable 
rate for a domestic well in a sandstone aquifer. In addition, sensitivity analyses of some of 
the key input parameters were conducted to assess their impact on predicted doses. 
Parameters chosen for the sensitivity analyses included those for which a set of definitive 
values could not be chosen because of variability in possible conditions (e.g., groundwater 
gradient or hydraulic conductivity) and those for which definitive data have not been 
collected but are thought to be very variable (e.g., source term concentration). 

Results 

Table 1 lists the concentrations of radium-226 depths and the corresponding 
estimated doses calculated at the three closest receptor points for the three shallowest 
casing failures. All of the calculated concentrations were below the current maximum 
allowable concentration of total radium in drinking water of 5 pCi/L, established under the 
Safe Drinking Water Act (5). In addition, all of the estimated doses were well below the 
currently accepted general public dose limit of 100 millirem per year (mrem/yr) from all 
sources, recommended by the International Commission on Radiological Protection (6). 
All of the other model runs (i.e., scenarios in which failure occurred at a depth greater than 
1,500 ft or runs in which the receptor was located more than 0.5 mi away) resulted in 
extremely low predicted radium concentrations, at least four orders of magnitude below 
those presented in Table 1. (The calculated radon-222 concentrations for all scenarios 
were at least four orders of magnitude below those calculated for radium-226.  Because 



these concentrations are considered to be insignificant, they are not presented in this 
paper.) 

Receptor points at pumping wells located 0.2 and 0.5 mi downgradient had lower 
estimated doses because of plume dispersion. Increasing the hydraulic conductivity or 
gradient by one order of magnitude increased the estimated doses at the receptor points; 
however, the doses were still well below the currently accepted standard. Doubling the 
concentration of radium in the NORM slurry effectively doubled the estimated doses. 

NORM DEMONSTRATION PROJECT 

Through its Oil and Gas Environmental Program, the DOE is co-funding the 
demonstration of a new NORM treatment and disposal technology developed by BPF, Inc., 
that entails final disposal of the NORM via injection into Class II injection wells (7). The 
BPF technology is a mobile, modular system in which NORM wastes are treated and 
disposed of at the lease site where the NORM is stored. The technology entails dissolving 
the radionuclides into a liquid solution and injecting that solution back into subsurface 
formations, using existing permitted injection wells located on or near the lease site. The 
three main processes provided by the treatment modules are (1) deoiling, (2) volume 
reduction, and (3) radionuclide extraction. In the BPF process, the radionuclide extraction 
process consists of dissolving the NORM solids and segregating the dissolved NORM 
from insoluble material present in the waste stream. This process is accomplished in a 
series of treatment steps, including chemical dissolution, carbonate roasting, and solids 
separation. The liquid effluents containing dissolved radionuclides are disposed of in an 
injection well along with the produced water already being injected. 

Evaluation of the BPF technology is underway; laboratory and bench-scale 
demonstrations have been conducted, and pilot-scale demonstrations at three field sites are 
expected to begin in the fall of 1997. At each of the three sites, an existing Class II 
injection well has been identified for the disposal of the radioactive effluents. During the 
pilot-scale field demonstrations, BPF expects to dispose of 840 to 2,100 gal/day of 
radioactive effluent. The activity level of the effluents is expected to range from 40,000 to 
80,000 pCi/L of radium. The depths of injection for the identified wells range from 4,000 
to 10,500 ft. 

Assumptions and Input Parameters 

To assist with the technology evaluation, a preliminary radiological dose 
assessment of the pilot-scale activities was conducted. The exposure pathway in this 
assessment assumed that casing failure would result in the release of the radioactive 
effluent at a shallower depth than intended, that the radionuclides would be transported to 
a drinking water well, and that an individual would ingest the contaminated water. 
Because the previous generic study indicated that casing failures below the drinking water 



aquifer resulted in negligible doses, the model runs for the NORM demonstration project 
considered only direct releases into a drinking water aquifer, even though the Class II wells 
to be used inject at much greater depths. 

As a worst-case scenario for all three sites, it was assumed that casing failure 
occurred at a depth of 100 ft in a shallow aquifer having a porosity of 0.2. Receptor 
points were located at a depth of 100 ft at distances of 100, 500, 1,000, and 5,000 ft from 
the injection well. It was assumed that 2,100 gal of effluent would be lost instantaneously; 
this volume represents the largest quantity expected to be handled in any given day during 
the demonstration project. The models were run for effluent activity levels of 40,000 and 
80,000 pCi/L of radium. 

Results 

Table 2 lists the concentrations of radium-226 calculated at the receptor points 
and the corresponding estimated doses. As they were in the generic study, all of the 
calculated concentrations were below the current maximum allowable concentration of 
total radium in drinking water of 5 pCi/L (5), and all of the estimated doses were well 
below the currently accepted general public dose limit of 100 mrem/yr from all 
sources (6). 

At least two factors characterizing the NORM demonstration project that were not 
accounted for in the preliminary dose assessment would result in lower estimated doses if 
they were addressed in the assumptions and input parameters. One factor is that during 
injection the radioactive effluent will be combined with a significant volume (up to 
750,000 gal/day) of produced water that is already being injected into the Class II wells on 
a regular basis. This will result in significant dilution of the effluent activity levels. The 
other factor is that the nearest known pumping well to any of the three sites is 
approximately 0.5 mi away. This well serves a stock tank and is unlikely to produce water 
consumed by a human. The nearest possible drinking water well appears to be more than 
5,000 ft away. Potential doses at distances greater than 5,000 ft will be negligible. 

CONCLUSIONS 

The results of the radiological dose assessments presented in this paper indicate 
that the subsurface disposal of NORM wastes via injection into permitted Class II wells 
presents only a negligible risk to the general public. In simulations of casing failures that 
release the radionuclides directly into a drinking water aquifer, radioactivity levels and 
associated radiological doses were predicted to be below levels of regulatory concern, even 
at nearby receptors. If more realistic assumptions regarding failure scenarios and receptor 
locations were used, potential doses would be negligible. 
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Table 1. Estimated Activities and Potential Doses Associated with Subsurface Injection 
of 4.2 Million Gallons (100,000 barrels) of NORM in a Generic Setting. 

Top Aquifer 
Failure Depth 

(ft) 

Receptor Location Downgradient from Injection Well (miles) 

0.0 0.2 0.5 

Activity 
Level 

(pCi/L) 

Annual 
Dose 

(mrem) 

Activity 
Level 

(pCi/L) 

Annual 
Dose 

(mrem) 

Activity 
Level 

(pCi/L) 

Annual 
Dose 

(mrem) 

300 

900 

1,500 

* 

0.250 

0.015 

* 

0.20 

0.01 

1.317 

0.155 

0.017 

1.00 

0.10 

0.01 

0.211 

0.053 

0.010 

0.20 

0.04 

0.08 

No value calculated because receptor location is coincident with failure location. 

Table 2. Estimated Activities and Potential Doses Associated with Subsurface 
Injection of 2,100 Gallons (50 barrels) of Radioactive Effluent during the NORM 
Demonstration Project. 

Receptor Location 
Downgradient 
from Injection 

Well (ft) 

Effluent Radioactivity Level (pCi/L) 

40,000 80,000 

Activity 
Level (pCi/L) 

Annual Dose 
(mrem) 

Activity 
Level (pCi/L) 

Annual Dose 
(mrem) 

100 1.940 1.500 3.870 3.000 

500 0.173 0.100 0.346 0.300 

1,000 0.061 0.050 0.122 0.090 

5,000 0.005 0.004 0.011 0.008 


